Summary Statement. In this study,
This study aims to investigate the mechanical properties of a rotator cuff tear repaired with a polypropylene interposition graft in an ovine infraspinatus ex-vivo model. Twenty fresh shoulders from skeletally mature sheep were used in this study. A tear size of 20 mm from the tendon joint was created in the infraspinatus tendon to simulate a large tear in fifteen specimens. This was repaired with a polypropylene mesh used as an interposition graft between the ends of the tendon. Eight specimens were secured with mattress stitches while seven were secured to the remnant tendon on the greater tuberosity side by continuous stitching. Remaining five specimens with an intact tendon served as a control group. All specimens underwent cyclic loading with a universal testing machine to determine the ultimate failure load and gap distance. Gap distance increased with progressive cyclic loading through 3000 cycles for all repaired specimens. Mean gap distance after 3000 cycles for both continuous and mattress groups are 1.7 mm and 4.2 mm respectively (P = .001). Significantly higher mean ultimate failure load was also observed with 549.2 N in the continuous group, 426.6 N in the mattress group and 370 N in the intact group. The use of a polypropylene mesh as an interposition graft for large irreparable rotator cuff tears is biomechanically suitable and results in a robust repair that is comparable to an intact rotator cuff tendon. When paired with a continuous suturing technique, it demonstrates significantly resultant superior biomechanical properties that may potentially reduce re-tear rates after repairing large or
Summary. In the sample studied, reparability of large and massive tears was associated with pre-op ASES and active external rotation in neutral position. Surgical factors affecting reparability were tear size, tendon mobility and shape of the tear. Introduction. The limited literature has shown good results with partial repairs of large and
Summary. In the sample studied, reparability of large and massive tears was associated with pre-op ASES and active external rotation in neutral position. Surgical factors affecting reparability were tear size, tendon mobility and shape of the tear. Introduction. The limited literature has shown good results with partial repairs of large and
Introduction. Glenoid inclination, defined as the angle formed by the intersection of a line made of the most superior and inferior points of the glenoid and a line formed by the supraspinatus fossa, has been postulated to impact the mechanical advantage of the rotator cuff in shoulder abduction. An increase in glenoid inclination has previously been reported in patients with
Treatment of
Introduction. Tendon healing begins with inflammation and results in an incomplete repair with fibrosis, culminating in tendon pathology along with tissue degeneration. Inflammatory mediators regulate the expression of growth factors, and members of the TGFβ superfamily including BMPs have been suggested to play a key role in the development of fibrosis. In established tendon diseases where inflammation and reparative processes persists, the cellular phenotype of tendon cells has been implied to undergo a transformation from that of normal tissue. This study investigates the inflammation-driven mechanisms of tendon pathology using an in vitro tendon cell model. We hypothesized that cells from diseased tendons will exhibit dysregulation of TGFβ superfamily members in response to inflammatory mediators when compared to cells derived from healthy tendons. Materials and Methods. Diseased human tendon cells were isolated from patients with large to
Rotator cuff tears are among the most common and debilitating
upper extremity injuries. Chronic cuff tears result in atrophy and
an infiltration of fat into the muscle, a condition commonly referred
to as ‘fatty degeneration’. While stem cell therapies hold promise
for the treatment of cuff tears, a suitable immunodeficient animal
model that could be used to study human or other xenograft-based
therapies for the treatment of rotator cuff injuries had not previously
been identified. A full-thickness, massive supraspinatus and infraspinatus tear
was induced in adult T-cell deficient rats. We hypothesised that,
compared with controls, 28 days after inducing a tear we would observe
a decrease in muscle force production, an accumulation of type IIB
fibres, and an upregulation in the expression of genes involved
with muscle atrophy, fibrosis and inflammation.Objectives
Methods