Aims. The aim of this study was to evaluate the ability of a
Aims. This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Methods. Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple
Advanced technologies, like robotics, provide enhanced precision for implanting total knee arthroplasty (TKA) components; however, optimal component position and limb alignment remain unknown. This study purpose was to identify the ideal target sagittal component position and coronal limb alignment that produce optimal clinical outcomes. A retrospective review of 1,091 consecutive TKAs was performed. All TKAs were PCL retaining or sacrificing with anterior lipped (49.4%) or conforming bearings (50.6%) performed with modern perioperative protocols. Posterior tibial slope, femoral flexion, and tibiofemoral limb alignment were measured with a standardized protocols. Patients were grouped by the āhow often does your knee feel normal?ā outcome score at latest follow-up. Machine learning algorithms were used to identify optimal alignment zones which predicted improved outcomes scores.Background
Methods
Implant loosening is a common cause of a poor outcome and pain after total knee arthroplasty (TKA). Despite the increase in use of expensive techniques like arthrography, the detection of prosthetic loosening is often unclear pre-operatively, leading to diagnostic uncertainty and extensive workup. The objective of this study was to evaluate the ability of a machine learning (ML) algorithm to diagnose prosthetic loosening from pre-operative radiographs, and to observe what model inputs improve the performance of the model. 754 patients underwent a first-time revision of a total joint at our institution from 2012ā2018. Pre-operative X-Rays (XR) were collected for each patient. AP and lateral X-Rays, in addition to demographic and comorbidity information, were collected for each patient. Each patient was determined to have either loose or fixed prosthetics based on a manual abstraction of the written findings in their operative report, which is considered the gold standard of diagnosing prosthetic loosening. We trained a series of deep convolution neural network (CNN) models to predict if a prosthesis was found to be loose in the operating room from the pre-operative XR. Each XR was pre-processed to segment the bone, implant, and bone-implant interface. A series of CNN models were built using existing, proven CNN architectures and weights optimized to our dataset. We then integrated our best performing model with historical patient data to create a final model and determine the incremental accuracy provided by additional layers of clinical information fed into the model. The models were evaluated by its accuracy, sensitivity and specificity.Background
Methods
Aims. This study used an artificial neural network (ANN) model to determine the most important pre- and perioperative variables to predict same-day discharge in patients undergoing total knee arthroplasty (TKA). Methods. Data for this study were collected from the National Surgery Quality Improvement Program (NSQIP) database from the year 2018. Patients who received a primary, elective, unilateral TKA with a diagnosis of primary osteoarthritis were included. Demographic, preoperative, and intraoperative variables were analyzed. The ANN model was compared to a logistic regression model, which is a conventional
Aims. To compare the gait of unicompartmental knee arthroplasty (UKA)
and total knee arthroplasty (TKA) patients with healthy controls,
using a
Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli.Aims
Methods
No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data.Aims
Methods
To identify variables independently associated with same-day discharge (SDD) of patients following revision total knee arthroplasty (rTKA) and to develop machine learning algorithms to predict suitable candidates for outpatient rTKA. Data were obtained from the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) database from the years 2018 to 2020. Patients with elective, unilateral rTKA procedures and a total hospital length of stay between zero and four days were included. Demographic, preoperative, and intraoperative variables were analyzed. A multivariable logistic regression (MLR) model and various machine learning techniques were compared using area under the curve (AUC), calibration, and decision curve analysis. Important and significant variables were identified from the models.Aims
Methods
The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays.Aims
Methods
The purpose of this study was to develop a personalized outcome prediction tool, to be used with knee arthroplasty patients, that predicts outcomes (lengths of stay (LOS), 90 day readmission, and one-year patient-reported outcome measures (PROMs) on an individual basis and allows for dynamic modifiable risk factors. Data were prospectively collected on all patients who underwent total or unicompartmental knee arthroplasty at a between July 2015 and June 2018. Cohort 1 (n = 5,958) was utilized to develop models for LOS and 90 day readmission. Cohort 2 (n = 2,391, surgery date 2015 to 2017) was utilized to develop models for one-year improvements in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score, KOOS function score, and KOOS quality of life (QOL) score. Model accuracies within the imputed data set were assessed through cross-validation with root mean square errors (RMSEs) and mean absolute errors (MAEs) for the LOS and PROMs models, and the index of prediction accuracy (IPA), and area under the curve (AUC) for the readmission models. Model accuracies in new patient data sets were assessed with AUC.Aims
Methods