Robotic-assisted technology in total knee arthroplasty (TKA) aims to increase implantation accuracy, with real-time data being used to estimate intraoperative component alignment. Postoperatively, Perth computed tomography (CT) protocol is a valid measurement technique in determining both femoral and tibial component alignments. The aim of this study was to evaluate the accuracy of intraoperative component alignment by robotic-assisted TKA through CT validation. A total of 33 patients underwent TKA using the
Introduction. Improper acetabular component orientation has been shown to negatively affect the outcome of total hip arthroplasty through increasing dislocation rates, component impingement, bearing surface wear, and the rate of revision surgeries. The “Safe Zone” was defined by Lewinnek et al. in 1978 as 5 to 25 degrees of cup version and 30 to 50 degrees of cup inclination. Later, the inclination “Safe Zone” values were modified to 30 to 45 degrees. Objectives. The primary purpose of this study was to assess whether the use of
Introduction. The
Identifying and restoring alignment is a primary aim of total knee arthroplasty (TKA). In the coronal plane, the pre-pathological hip knee angle can be predicted using an arithmetic method (aHKA) by measuring the medial proximal tibial angle (MPTA) and lateral distal femoral angle (aHKA=MPTA - LDFA). The aHKA is shown to be predictive of coronal alignment prior to the onset of osteoarthritis; a useful guide when considering a non-mechanically aligned TKA. The aim of this study is to investigate the intra- and inter-observer accuracy of aHKA measurements on long leg standing radiographs (LLR) and preoperative
Time analysis from video footage gives a simple outcome measure of surgical practice against a measured model of use. The added detail that can be produced, over simply recording the usual surgical process data such as tourniquet times, allows us to identify and time the sequence of surgical procedures as stages, to describe issues, and the identification of idiosyncratic behaviours for review and comparison. Makoplasty (Mako surgical corp. FL, US) partial knee operation times were compared using this technique with those from the Oxford (Biomet, IN, US) partial knee. Three experienced surgeons were observed over 19 Makoplasty procedures ([Consultant 1] 11, [Consultant 2] 5, [Consultant 3] 3) and 2 experienced surgeons over 11 Oxford partial knee procedures ([Consultant 1] 5, [Consultant 2] 6). Times were refined into separate stages that defined the major operative steps of both the Makoplasty and Oxford processes as used by the surgical team at the Glasgow Royal Infirmary, UK. The videos were reviewed for start and stop times for pre-defined actions that would be expected to be observed during each surgical process and from these stage lengths were calculated. For both the Oxford and
Acetabular cup positioning1, 2, leg length discrepancy3 and global offset4 are important parameters associated with outcomes following total hip arthroplasty (THA). Deviation from an accepted range of values for each of these parameters can lead to significant complications including nerve injury, low back pain, abnormal gait, increased dislocation rate, and bearing surface wear. The primary purpose of this study was to assess whether the use of the MAKO™ robotic hip system is reliable in predicting post-operative radiographic measurements of cup inclination, cup anteversion, leg length change, and global offset change in THA. All robotic-assisted THAs performed using the MAKO™ system between June 2011 and Dec 2012 were reviewed. A single surgeon performed all cases through a mini-posterior approach. The intra-operative measurements of cup inclination and anteversion angles, leg length change, and global offset change recorded by the MAKO™ system were compared to the post-operative radiographic measurements.Background:
Materials and Methods:
Introduction. Robotic-assisted hip arthroplasty helps acetabular preparation and implantation with the assistance of a robotic arm. A computed tomography (CT)-based navigation system is also helpful for acetabular preparation and implantation, however, there is no report to compare these methods. The purpose of this study is to compare the acetabular cup position between the assistance of the robotic arm and the CT-based navigation system in total hip arthroplasty for patients with osteoarthritis secondary to developmental dysplasia of the hip. Methods. We studied 31 hips of 28 patients who underwent the robotic-assisted hip arthroplasty (MAKO group) between August 2018 and March 2019 and 119 hips of 112 patients who received THA under CT-based navigation (CT-navi group) between September 2015 and November 2018. The preoperative diagnosis of all patients was osteoarthritis secondary to developmental dysplasia of the hip. They received the same cementless cup (Trident, Stryker). Robotic-assisted hip arthroplasty were performed by four surgeons while THA under CT-based navigation were performed by single senior surgeon. Target angle was 40 degree of radiological cup inclination (RI) and 15 degree of radiological cup anteversion (RA) in all patients. Propensity score matching was used to match the patients by gender, age, weight, height, BMI, and surgical approach in the two groups and 30 patients in each group were included in this study. Postoperative cup position was assessed using postoperative anterior-posterior pelvic radiograph by the Lewinnek's methods. The differences between target and postoperative cup position were investigated. Results. The acetabular cup position of all cases in both
Unicompartmental knee arthroplasty (UKA) has been gaining popularity in recent years due to its perceived benefits over total knee arthroplasty (TKA), such as greater bone preservation, reduced operating-room time, better post-operative range of motion and improved gait. However there have been failures associated with UKA caused by misalignment of the implants that have lead to revisions. To improve the implant alignment a robotic guidance system called the RIO Robotic Arm has been developed by
Introduction. Cementless unicondylar knee implants are intended to offer surgeons the potential of a faster and less invasive surgery experience in comparison to cemented procedures. However, initial 8 week fixation with micromotion less than 150µm is crucial to their survivorship1 to avoid loosening2. Methods. Test methods by Davignon et al3 for micromotion were used to assess fixation of the
Introduction:. Unicompartmental knee arthroplasty (UKA) has been proven to be an effective treatment for degenerative joint disease confined to a single tibiofemoral compartment. Recently, UKAs have been performed with robotic-arm assistance (RAA) devices to build and improve upon previous computer-assisted navigation. As a pilot study, we have analyzed short term outcomes for a series of robotic-arm assisted medial UKAs and compared them to a comparable cohort of traditionally instrumented medial UKAs. Methods:. Ninety-eight fixed-bearing medial UKAs were isolated in our prospective data collection database for short-term analysis for this study. Included patients completed pre and post-operative Short Form 12 version 1 Health Survey (SF12), Western Ontario and McMaster University Outcome Scores (WOMAC), and Knee Society Function Score (KSFS) questionnaires. Forty-eight RAA UKAs were performed using the
Unicompartmental knee arthroplasty (UKA) has been gaining popularity in recent years due to its perceived benefits over total knee replacements, such as greater bone preservation, reduced operating-room time, better postoperative range of motion and improved gait. However there have been failures associated with UKA caused by misalignment of the implants. To improve the implant alignment a robotic guidance system called the RIO Robotic Arm has been developed by
Introduction. Primary robotic-arm assisted total hip arthroplasty (THA) yields more accurate and reproducible acetabular cup placement, nonetheless, data is scarce in terms of outcomes. The purpose of the present study was to report on patient-reported outcomes (PROMs) in a large group of patients who underwent robotic-arm assisted THA. The authors hypothesized that (1) patients who underwent robotic-arm assisted primary THA would achieve favorable and significant improvement in PROMs, (2) an accurate and reproducible acetabular cup placement with respect to the defined SafeZones would be obtained, and (3) a low rate of THA dislocation would be observed. Methods. Prospectively collected data were retrospectively reviewed between April 2012 to May 2017. Primary THA using
Introduction. Robotic-arm assisted knee arthroplasty (rKA) has been associated with improved clinical, radiographic, and patient-reported outcomes. There is a paucity of literature, however, addressing its cost effectiveness. In the context of an integrated health system with an insurance plan and single source comprehensive data warehouse for electronic health records and claims data, we present an evaluation of healthcare costs and utilization associated with manual knee arthroplasty (mKA) versus rKA. We also examine the influence of rKA technology on surgeons’ practice patterns. Methods. Practice patterns of KA were assessed 18 months before and after introduction of robotic technology in April 2018. For patients also insured through the system's health plan, inpatient costs (actual costs recorded by health system), 90-day postoperative costs (allowed amounts paid by insurance plan), and 90-day postoperative utilization (length of stay, home health care visits, rehabilitation visits) were compared between mKA and rKA patients, stratified by total (TKA) or unicompartmental (UKA) surgery. Linear regression modeling was used to compare outcomes between the two pairs of groups (mKA vs. rKA, for both UKA and TKA). Log-link function and gamma error distribution was used for costs. All analyses were done using SAS statistical software, with p<0.05 considered statistically significant. Results. Overall KA volume increased 21%, from 532 cases in the pre-rKA period to 644 post-rKA introduction, with UKA surgeries increasing from 38 to 97 (155%). Of these KAs, 218 patients were insured through our system's health plan (38 rUKAs, 9 mUKAs, 91 rTKAs, and 80 mTKAs), allowing precise insurance claims analysis for postoperative utilization and cost. Patients with rKA had significantly lower mean home health costs (-90% difference for UKA, −79% difference for TKA, p<0.02) and home rehab costs (-64% difference for UKA, −73% difference for TKA, p≤0.007) than mKA patients. No significant differences were observed in outpatient rehab (visits or costs), total rehab costs, or length of stay. Mean total postoperative costs were significantly lower for rUKA than mUKA (-47% difference, p=0.02) but similar for TKA (p>0.05). There were no significant differences in total inpatient costs between
Recently in the literature the indications of unicompartmental knee arthroplasty have been extended by the inclusion of patients with arthritis which is predominantly but not exclusively effecting the medial compartment. The aim of this study is to evaluate the outcome of
Introduction:. Unicompartmental knee arthroplasty has been shown to have lower morbidity, quicker rehabilitation and more normal kinematics compared to conventional TKA, but subchondral defects, or severe osteoarthritic changes, of the medial compartment may complicate component positioning. Successful UKA in these patients requires proper planning and exact placement of the components to ensure adequate and stable fixation and proper postoperative kinematics. This study presents a series of three patients with spontaneous osteonecrosis of the knee receiving a UKA with CT-based haptic robotic guidance. Methods:. This series includes two females and one male with spontaneous osteonecrosis of the medial femoral condyle who underwent outpatient mini-incision medial UKA using the
Introduction. Femoral component loosening is one of the most common failure modes in cementless total hip arthroplasty (THA). Patient age, weight, gender, osteopenia, stem design and Dorr-C bone have all been proposed as risk factors for poor fixation and subsequent stem subsidence and poor outcome. With the increased popularity of CT-based assistive technologies in THA, (Stryker
Background/Introduction. As a new generation of robotic systems is introduced into the world of arthroplasty, Robotic-Assisted Total Knee Arthroplasty (TKA) represents a growing proportion of a reconstructive surgeon's operative volume. This study aims to compare the post-operative readmission rate, pain scores, costs, as well as the effects on surgeon efficiency one year after adoption of these technologies into clinical practice. Methods. A retrospective chart review was conducted regarding all conventional and robotic-assisted TKAs performed by a single surgeon in the year following January 1, 2017, the date
Restoring native hip biomechanics is crucial to the success of THA. This is reflected both in terms of complications after surgery such as instability, leg length inequality, pain and limp; and in terms of patient satisfaction. The challenge that remains is that of achieving optimal implant sizing and positioning so as to restore, as closely as possible, the native hip biomechanics specific to the hip joint being replaced. This would optimise function and reduce complications, particularly, instability. (Mirza et al., 2010). Ideally, this skill should also be reproducible irrespective of the surgeon's experience, volume of surgery and learning curve. The general consensus is that the most substantial limiting factor in a THA is the surgeon's performance and as a result, human errors and unintended complications are not completely avoidable (Tarwala and Dorr, 2011). The more challenging aspects include acetabular component version, sizing and femoral component sizing, offset and position in the femoral canal. This variability has led to interest in technologies for planning THA, and technologies that help in the execution of the procedure. Advances in surgical technology have led to the development of computer navigation and robotic systems, which assist in pre-operative planning and optimise intra-operative implant positioning. The evolution of surgical technology in lower limb arthroplasty has led to the development of computer navigation and robotics, which are designed to minimise human error and improve implant positioning compared to pre-operative templating using plain radiographs. It is now possible to use pre-operative computerised tomography (image-based navigation) and/or anatomical landmarks (non-imaged-based navigation) to create three-dimensional images of each patient's unique anatomy. These reconstructions are then used to guide bone resection, implant positioning and lower limb alignment. The second-generation RIO Robotic Arm Interactive Orthopaedic system (MAKO Surgical) uses pre-operative computerised tomography to build a computer-aided design (CAD) model of the patient's hip. The surgeon can then plan and execute optimal sizing and positioning of the prostheses to achieve the required bone coverage, minimise bone resection, restore joint anatomy and restore lower limb biomechanics. The
Introduction. Accurate component placement in total hip arthroplasty (THA) improves post-operative stability and reduces wear and aseptic loosening. Methods for achieving accurate stem placement have not been as extensively studied as cup placement. Objectives. The purpose of this study is to determine how consistently femoral stem version can be corrected to an ideal of 15 +/− 5 degrees using robotic guidance. Furthermore, the study aims to identify other factors related to approach and patient demographics, which may influence the degree of correction obtained. Methods. 175 consecutive patients who underwent
Introduction. Long term acetabular component fixation is dependent on bone ingrowth, which is affected by initial stability and the contact area between the bone and acetabular component. Mismatch between the component and cavity size has been shown to be one reason for component loosening. Furthermore, the potential of acetabular fracture during insertion of oversized components is larger than line-to-line components. An ideal cavity preparation would be a true hemispherical cavity that can provide maximum contact area between the shell and bone while also achieving adequate press fit for implant initial stability. The goal of this study was to characterize the cavity morphology produced by a commercially available reamer and compare it to a new reamer design. Materials & Methods. 36mm and 52mm reamers (n=6) were selected from conventional reamers (Stryker, Mahwah, NJ), which have successful clinical history exceeding 20 years, and Smooth Cut Reamers (Tecomet, Warsaw, IN and Stryker, Mahwah, NJ), which are a new design. Hemispherical cavities were created in 30 pcf polyurethane foam blocks (Pacific Research Laboratories, WA) using a custom software for the