Bone tissue engineering constructs (BTEC) combining natural resorbable osteoconductive scaffolds and mesenchymal stem cells (MSCs) have given promising results to repair critical size bone defect. Yet, results remain inconsistent. Adjonction of an osteoinductive factor to these BTEC, such as rh-BMP-2, to improve bone healing, seems to be a relevant strategy. However, currently supraphysiological dose of this protein are used and can lead to adverse effects such as inflammation, ectopic bone and/or bone cyst formation. Interestingly, in a preliminary study conducted in ectopic site in a murine model, a synergistic effect on bone formation was observed only when a
We have evaluated the effect of the short-term administration of
Our previous rat study demonstrated an ex vivo-created “Biomimetic Hematoma” (BH) that mimics the intrinsic structural properties of normal fracture hematoma, consistently and efficiently enhanced the healing of large bone defects at extremely
Background. Bone Morphogenetic Protein (BMP) has been used in clinical practice to stimulate fracture healing and spinal arthrodesis. Difficulty in localising and maintaining BMP at the target site has resulted in the use of large doses of BMP, and has been associated with significant adverse effects. We have previously shown clay hydrogels can bind growth factors for localised efficacy. We hypothesised that localisation of BMP within clay gels would reduce the dose required to mediate bone formation. Methods. 2×10-4mg and 1×10-5 mg BMP were mixed in Laponite and applied to collagen sponge. 3 sponges containing high dose, and 3 containing
Objectives. This study was conducted to evaluate the cytokine-release kinetics of platelet-rich plasma (PRP) according to different activation protocols. Methods. Two manual preparation procedures (single-spin (SS) at 900 g for five minutes; double-spin (DS) at 900 g for five minutes and then 1500 g for 15 minutes) were performed for each of 14 healthy subjects. Both preparations were tested for platelet activation by one of three activation protocols: no activation, activation with calcium (Ca) only, or calcium with a
Abstract. Objectives. Mesenchymal stromal/stem cells (MSCs) are increasingly recognized as regulators of immune cells during disease or tissue repair. During these situations, the extracellular matrix (ECM) is very dynamic and therefore, our studies aim to understand how ECM influences the activity of MSCs. Methods. Human MSCs cultured on tissue culture plastic (TCP) and encapsulated within collagen type I, fibrin, or mixed Collagen-Fibrin were exposed to
Summary Statement. This study explores the therapeutic use of MSCs to enhance ligament healing from an immuno-modulatory perspective. We report improved healing with MSC treatment, but inconsistent effects on inflammatory markers. Introduction. Mesenchymal stem cell (MSC) use continues to hold untapped potential as a therapeutic agent because: 1) MSCs have the ability to differentiate into several different connective tissues such as cartilage, bone, muscle and fat (1–3), and 2) MSCs can modulate immune and inflammatory responses that affect healing (4, 5). This paradigm shift from differentiation to immune modulation is being studied for different applications (6). Several studies suggest MSCs decrease inflammation by reducing pro-inflammatory cytokines and changing the macrophage phenotype from M1 (classically-activated) to M2 (alternatively-activated) (7–10). However, their immune-modulatory effects within a healing ligament remain unexplored. MSCs can behave differently depending on the tissue and healing environment they encounter, which leads to our interest in MSC immune-modulation in healing ligaments. Methods. Forty-four rats underwent bilateral MCL transection. Days 5 and 14 healing were examined comparing two cell doses (1×10. 6. MSCs or 4×10. 6. MSCs). At the time of surgery, fluorescently-labeled rat MSCs (passage 8–10) were injected into the right MCL, while the left MCL served as a control for normal healing. MCLs were collected at the different time points and processed with immunohistochemistry (n=12). Type 1 macrophages (M1) and type 2 macrophages (M2) were quantified spatially within the healing ligaments. Twelve rats with MSC injections underwent mechanical testing. A multiplex cytokine reader measured 10 different cytokines in the healing ligaments at days 5 and 14. Results. MSCs were detected solely in the healing region and healing region edges at Days 5 and 14 in both dose groups using fluorescence microscopy. At day 5, the higher dose of cells produced significant M2 changes throughout the ligament. There were more M2′s (p=.05) in the distal and proximal healing regions of the normal healing ligament compared to the MSC injection group. There were significant changes in both the
Background. Stem cell based intervertebral disc (IVD) regeneration is quickly moving towards clinical applications. However, many aspects need to be investigated to routinely translate this therapy to clinical applications, in particular, the most efficient way to deliver cell to the IVD. Cells are commonly delivered to the IVD through the annulus fibrosus (AF) injection. However, recent studies have shown serious drawbacks of this approach. As an alternative we have described and tested a new surgical approach to the IVD via the endplate-pedicles (transpedicular approach). The Purpose of the study was to test MSCs/hydrogel transplantation for IVD regeneration in a grade IV preclinical model of IDD on large size animals via the transpeducular approach with cell dose escalation. Methods. Adult sheep (n=18) underwent bone marrow aspiration for autologous MSC isolation and expansion. MSC were suspended in autologous PRP and conjugated with Hyaluronic Acid and Batroxobin at the time of transplant (MSCs/hydrogel). Nucleotomy was performed via the transpedicular approach in four lumbar IVDs and that were injected with 1) hydrogel, 2)
Long bone fractures in patients with diabetes mellitus (DM) are slow to heal, often resulting in delayed reunion or non-union. It is reasonable to postulate that the underlying cause of these DM-associated complications is a reduced population of bone marrow progenitor cells and/or their dysfunction. With the hypothesis that the administration of healthy, allogeneic adult bone marrow-derived mesenchymal stromal cells (MSCs) can enhance DM fracture healing, the aim of this endeavour was to assess the efficacy of MSC administration to support fracture repair using two doses. Here 250,000 or 500,000 human bone marrow-derived MSCs were locally introduced to femoral fractures in diabetic mice, and the quality of de novo bone assessed 8 weeks later. Preliminary bone bridging was evident in all animals; however, a large circumferential reparative callus was consistently retained indicating non-union. Micro-CT analysis elucidated consistent callus dimensions, bone mineral density, bone volume/total volume in all groups, but an increase in bone surface area/bone volume in cell-treated fractures. Moreover, greater amounts of mature bone were identified in fractures treated with a
Metaphyseal fracture healing is important in joint-adjacent fractures and appears to differ from diaphyseal healing. We recently found that a biomaterial delivering bone morphogenic protein-2 (BMP-2) and zoledronic acid (ZA) healed the metaphyseal bone in a tibial defect but failed closing the cortical defect. In this study we added a BMP-2 soaked collagen membrane to study cortical healing from the muscle tissue surrounding the bone. We used SD rats and a 4.5 mm metaphyseal circular tibial defect. In group 1 (G1), a porous gelatin-calcium sulphate-hydroxyapatite (GCH) biomaterial containing rhBMP-2 and ZA was used to fill the defect (GCH+5 μg BMP-2+10 μg ZA). In group 2 (G2), we used a collagen membrane (2 μg BMP-2) to cover the GCH filled defect (GCH+3μg BMP+10 μg ZA). Group 3 (G3) was an empty control. Animals were sacrificed after 8-weeks and bone regeneration was evaluated with micro-CT and histology. In both G1 (P<0.001) and G2 (p<0.001) a significantly higher mineralized volume was found in the defect compared to empty G3. In G2 higher mineralized volume was found in the cortical region compared to both G1 (p<0.01) and G3 (p<0.001) as seen via micro-CT. Histologically, G1 and G2 showed islands of trabecular bone in the defect peripherally but only G2 showed cortical healing. G3 was empty in the middle but showed healed cortex. In conclusion, GCH can be used to deliver BMP-2 and ZA to promote metaphyseal bone growth. A membrane (CM) doped with
Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at
Polyether ether ketone (PEEK) has been increasingly employed as biomaterials for trauma, orthopeadic, and spinal implants. However, concern has been raised about the inertness of PEEK which limits bone integration. In this study, we have coated PEEK with a functional material seeking to promote osteogenic differentiation of human mesenchymal stem cells (hMSC). We have used spray drying to coat poly(ethyl acrylate) (PEA) as a coating on PEEK. This technique is simple, allows a range of controlled coating thicknesses (from hundred nm to a few um), cost effective and easily translatable to scaffolds or implant surfaces for existing or new orthopaedic applications. PEA induces the organisation of fibronectin (FN) into nanonetworks upon simple adsorption from protein solutions. These FN nanonetworks on PEA represent a microenvironment for efficient growth factor binding and presentation in very low but effective doses. In this study we show cell adhesion and stem cell differentiation towards an osteogenic lineages when bone morphogenetic protein 2 (BMP2) was adsorbed on these engineered PEEK/PEA/FN microenvironments in very
Background. The doses of local rhBMP-2 in commercially available materials are high with known drawbacks such as inflammation and premature bone resorption. The latter can be prevented by adding bisphosphonates like zoledronic acid (ZA) but systemic ZA has side effects and patient adherence to treatment is low. In a recent study, we have shown that local co-delivery of rhBMP-2 and ZA via a calcium sulphate/hydroxyapatite (CS-HA) biomaterial can be used to regenerate both cortical and trabecular bone in a rat model of metaphyseal bone defect. Even
Curettage and packing with polymethylmethacrylate cement is a routine treatment for giant-cell tumour (GCT) of bone. We performed an in vitro evaluation of the cytotoxic effect of a combination of cement and methotrexate, doxorubicin and cisplatin on primary cell cultures of stromal GCT cells obtained from five patients. Cement cylinders containing four different concentrations of each drug were prepared, and the effect of the eluted drugs was examined at three different time intervals. We found that the cytotoxic effect of eluted drugs depended on their concentration and the time interval, with even the lowest dose of each drug demonstrating an acceptable rate of cytotoxicity. Even in
The function of the knee joint is to allow for locomotion and is comprised of various bodily structures including the four major ligaments; medial collateral ligament (MCL), lateral collateral ligament (LCL), anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). The primary function of the ligaments are to provide stability to the joint. The knee is prone to injury as a result of osteoarthritis as well as ligamentous and meniscal lesions. Furthermore, compromised joint integrity due to ligamentous injury may be a result of direct and indirect trauma, illness, occupational hazard as well as lifestyle. A device capable of non-invasively determining the condition of the ligaments in the knee joint would be a useful tool to assist the clinician in making a more informed diagnosis and prognosis of the injury. Furthermore, the device would potentially reduce the probability of a misdiagnosis, timely diagnosis and avoidable surgeries. The existing Laxmeter prototype (UK IPN: GB2520046) is a Stress Radiography Device currently limited to measuring the laxity of the MCL and LCL at multiple fixed degrees of knee flexion. Laxity refers to the measure of a ligament's elasticity and stiffness i.e. the condition of the ligament, by applying a known load (200N) to various aspects of the proximal tibial and thereby inducing tibial translation. The extent of translation would indicate the condition of the ligament. The Laxmeter does not feature a load applying component as of yet, however, it allows for the patient to be in the most comfortable and ideal position during radiographic laxity measurement testing. The entire structure is radiolucent and attempts to address the limitations of existing laxity measurement devices, which includes: excessive radiation exposure to the radiographic assistant, little consideration for patient ergonomics and restrictions to cruciate or collateral ligament laxity measurements. The study focusses on further developing and modifying the Laxmeter to allow for: the laxity measurement of all four major ligaments of the knee joint, foldability for improved storage and increased structural integrity. Additionally, a load applicator has been designed as an add-on to the system thereby making the Laxmeter a complete Stress Radiography Device. Various materials including Nylon, Polycarbonate, Ultra High Molecular Weight Polyethylene (UHMWPE) – PE 1000, and Acetal/ POM were tested, using the
Currently, the cement being used for hemiarthroplasties and total hip replacements by the authors and many other surgeons in the UK is Palacos® (containing 0.5g Gentamicin). Similar cement, Copal® (containing 1g Gentamicin and 1g Clindamycin) has been used in revision arthroplasties, and has shown to be better at inhibiting bacterial growth and biofilm formation. We aim to investigate the effect on SSI rates of doubling the gentamicin dose and adding a second antibiotic (clindamycin) to the bone cement in hip hemiarthroplasty. We randomised 848 consecutive patients undergoing cemented hip hemiarthroplasty for fractured NOF at one NHS trust (two sites) into two groups: Group I, 464 patients, received standard cement (Palacos®) and Group II, 384 patients, received high dose, double antibiotic-impregnated cement (Copal®). We calculated the SSI rate for each group at 30 days post-surgery. The patients, reviewers and statistician were blinded as to treatment group. The demographics and co-morbid conditions (known to increase risk of infection) were statistically similar between the groups. The combined superficial and deep SSI rates were 5 % (20/394) and 1.7% (6/344) for groups I and II respectively (p=0.01). Group I had a deep infection rate 3.3 %(13/394) compared to 1.16% (4/344) in group II (p=0.082). Group I had a superficial infection rate 1.7 % (7/394) compared to 0.58% (2/344) in group II (p=0.1861). 33(4%) patients were lost to follow up, and 77 (9%) patients were deceased at the 30 day end point. There was no statistical difference in the 30 day mortality, C. difficile infection, or the renal failure rates between the two groups. Using high dose double antibiotic-impregnated cement rather than standard
Summary Statement. Antioxidant containing UHMWPE particles induced similar levels of in vitro macrophage proliferation and in vivo inflammation in the mouse air pouch model as UHMWPE particles alone. Benefit of antioxidant in reducing wear particle induced inflammation requires further investigation. Introduction. Wear particles derived from UHMWPE implants can provoke inflammatory reaction and cause osteolysis in the bone, leading to aseptic implant loosening. Antioxidants have been incorporated into UHMWPE implants to improve their long term oxidative stability. However it is unclear if the anti-inflammatory property of the antioxidant could reduce UHMWPE particle induced inflammation. This study evaluated the effect of cyanidin and vitamin E on UHMWPE induced macrophage activation and mouse air pouch inflammation. Methods. Four types of UHMWPE were used: (1) compression molded (CM) conventional GUR1020 (PE); (2) CM GUR1020 blended with 300 ppm cyanidin (C-PE); (3) CM GUR1020 blended with 1000 ppm α-tocopherol (BE-PE); and (4) CM GUR1020, gamma irradiated at 100kGy, diffused with α-tocopherol, and sterilised at 30kGy (DE-PE). Particles were generated by cryomilling. Particle count, size, and aspect ratio were determined using SEM and Image Pro. Each particle group was cultured with RAW264.7 macrophage cells at four concentrations (0.625, 1.25, 2.5, and 5 μg/mL) in a standard medium for 4 days. Cell numbers were quantified using MTT assay. Cytokine expression (IL-1β, TNFα, and IL-6) was measured using RT-PCR and ELISA. Particles were also suspended in PBS at 2 concentrations (0.2 or 1 mg) and injected into subcutaneous air pouches in BALB/c mice. Control animals were injected with PBS alone. Six days post-injection air pouches were harvested, half of which were fixed for histology to measure membrane thickness and inflammatory cell quantity. Remaining air pouches were frozen and analyzed by ELISA for cytokine production. Data were analyzed using one-way ANOVA with post hoc testing. P<0.05 was considered significant. Results. All 4 materials showed similar particle characteristics after cryomilling. Particle size ranged from 1 to 19 μm with 33% of particle population smaller than 2 μm. All particle groups supported macrophage proliferation, showing an inverse correlation between proliferation rate and particle dose. Gene expression of IL-1β and TNFα also showed an inverse correlation with particle dose. Expression of IL-1β, TNFα, and IL-6 appeared lower in cells cultured with C-PE than the other 3 materials. The accumulative protein productions of IL-1β and TNFα were significantly lower while IL-6 production was moderately lower in C-PE, BE-PE and DE-PE when compared to PE. Injection of polyethylene particles increased the air pouch membrane thickness significantly compared to the PBS control in all particle types and doses. Higher particle dose induced thicker membrane in all 4 materials. A similar trend was also observed in the percentage of inflammatory cell infiltration in the pouch membrane. C-PE and DE-PE particles at
Summary Statement. The current study introduced the effects of projection errors on ankle morphological measurements using CT-based simulated radiographs by correlation analysis between 2D/3D dimensions and reliability analysis with randomised perturbations while measuring planar parameters on radiographs. Introduction. Clinical success of total ankle arthroplasty (TAA) depends heavily on the available anatomy-based information of the morphology for using implants of precisely matched sizes. Among the clinically available medical imaging modalities, bi-planar projective radiographs are commonly used for this purpose owing to their convenience, low cost, and
The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.Objectives
Methods
Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed Objectives
Methods