header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 2, Galway, Ireland, September 2018.


Long bone fractures in patients with diabetes mellitus (DM) are slow to heal, often resulting in delayed reunion or non-union. It is reasonable to postulate that the underlying cause of these DM-associated complications is a reduced population of bone marrow progenitor cells and/or their dysfunction. With the hypothesis that the administration of healthy, allogeneic adult bone marrow-derived mesenchymal stromal cells (MSCs) can enhance DM fracture healing, the aim of this endeavour was to assess the efficacy of MSC administration to support fracture repair using two doses. Here 250,000 or 500,000 human bone marrow-derived MSCs were locally introduced to femoral fractures in diabetic mice, and the quality of de novo bone assessed 8 weeks later. Preliminary bone bridging was evident in all animals; however, a large circumferential reparative callus was consistently retained indicating non-union. Micro-CT analysis elucidated consistent callus dimensions, bone mineral density, bone volume/total volume in all groups, but an increase in bone surface area/bone volume in cell-treated fractures. Moreover, greater amounts of mature bone were identified in fractures treated with a low dose of MSCs. Four-point bending evaluation of the mechanical integrity of the repairing fracture indicated a statistically significant improvement in flexure strength and flexure modulus in DM fractures treated with 250,000 MSCs as compared to controls. An improvement in total energy required for failure was observed in both groups that received MSCs. Therefore, the administration of non-DM bone marrow-derived MSCs supported the development of more mature bone in the reparative callus, resulting in greater mechanical integrity.