Aims. Arthrofibrosis is a relatively common complication after joint injuries and surgery, particularly in the knee. The present study used a previously described and validated rabbit model to assess the biomechanical, histopathological, and molecular effects of the mast cell stabilizer
Summary. Previous work in a rabbit model of post-traumatic joint contractures shows that the mast cell stabilizer
Purpose: To determine if mast cell activity is vital to the induction of joint capsule fibrosis and contracture formation in a rabbit model of posttraumatic joint contracture. Method: To reproducibly induce joint contractures, we used a model of surgical injury and immobilization of the knee in skeletally mature New Zealand white rabbits. Four animals groups were studied: a non-operative control group (CON), an operative contracture group (ORC) and two-operative groups treated with a mast cell stabilizer,
As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.Aims
Methods
Purpose. Recent work has shown that joint contracture severity can be decreased with the mast cell stabilizer
Purpose: The objective of the present study was to determine whether human mast cells can modify behavior of human elbow contracture capsule cells in an in vitro collagen gel contraction assay. Method: Posterior elbow joint capsule was obtained from a 38 year old man with a chronic (>
1 year) post-traumatic joint contracture. Joint capsule cells were isolated and suspended at a density of 2.5 x 105 cells/ml, and mixed with neutralized Collagen solution composed with 58% Vitrogen 100 purified collagen. Aliquots of collagen gel without cells, with only the human mast cell line, HMC-1 (2.5× 105), human capsule cells (2.5 × 105), human capsule cells (2.5 × 105) and an equal number of mast cells (1:1), or human capsule cells (2.5× 105) and 7.5× 105 mast cells (1:3) were then cast into wells tissue culture plate. The gels were maintained with 0.5 ml DMEM composed with 2% BSA and incubated at 37°C for 12 h for gelation to occur. After 12 hr initial culture, the gels were detached from the wall and the bottom of culture plate wells, and gel area was determined at 0h, 2h, 4h, 6h, 24h, 48h, and 72h Gel contraction studies were carried out on passage 6 and done in triplicate. The blocking assay to inhibit mast cell – joint capsule cell interaction employed antibodies to Stem Cell Factor (SCF) and c-kit. SCF (0.5, 1 or 10 microg/ml) and/or c-kit (0.05, 0.1 or1 microg/ml) were added individually or in combination (SCF 10 microg/ ml and c-kit 1 microg/ml only) to cells/collagen gel mixture before gel casting. The ratio of human capsule cells and HMC-1 were kept constant at 1:3 throughout the experiment. The inhibitory effect of SCF and c-kit antibodies on collagen gel contraction induced by human capsule cells and HMC-1 was expressed in percentage of gel areas at 24h post release. Inhibition effect (%) = 100% – [(gel size – c-kit or SCF gel size)/(blank gel size – JC:M gel size)x 100%]. Statistical analysis involved an ANOVA with posthoc Bonferroni correction. P <
0.001 was significant. Data are mean ± standard deviation. Results: Joint capsule cells were able to contract collagen gels in a time-dependent manner. This contraction was significantly enhanced in the presence of the HMC-1 cells in a dose dependent fashion (p <
0.001). HMC-1 cells were unable to contract the collagen gels by themselves. Experiments with antibodies to the mast cell – fibroblast direct cell-cell communication determinants SCF or c-kit showed inhibition of the enhanced contraction at 24 hours between 43 – 72%. Combining the highest dose of SCF and c-kit led to 82% inhibition. Conclusion: This study has shown that cells isolated from human elbow joint contracture capsules respond to mast cells in a collagen gel assay in a dose dependent manner. This study is consistent with our previous work which has shown that
Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis.Objectives
Materials and Methods