Abstract
Purpose
Recent work has shown that joint contracture severity can be decreased with the mast cell stabilizer ketotifen in association with decreased numbers of myofibroblasts and mast cells in the joint capsule of a rabbit model of post-traumatic contractures. Neuropeptides such as Substance P (SP) can induce mast cells to release growth factors. Using a gel contraction assay, we test the hypothesis that joint capsule cell-mediated contraction of a collagen gel can be enhanced with SP, but the effect is magnified in the presence of mast cells.
Method
Anterior elbow joint capsules were obtained at the time of surgical release from 2 men (age 34 and 54) and 1 woman (age 40) with chronic (> 1 year) post-traumatic joint contractures. The human mast cell line HMC-1 (Mayo Clinic, Rochester), SP and the NK1 receptor antagonist RP67580 (Sigma, Oakville, ON) were used. NK1 is the SP receptor.
Neutralized Collagen solution composed with 58% Vitrogen 100 purified collagen mixed with HMC-1 cells only (7.5 105), human capsule cells (2.5 105), or human capsule cells (2.5 105) and 7.5 105 mast cells (1:3) were cast into 24- well tissue culture plates. In some experiments, SP (1 × 10−5 M) +/− RP67580 (0.5 mM) were added. The gels were maintained with 0.5 ml DMEM composed with 2% BSA and incubated at 37C for 12 h for gelation to occur. The gels were then detached from the wall and the bottom of culture plate wells, and photographed at regular intervals up to 72 hours. Gel contraction studies were carried out on passage 4 and done in triplicate for each patient. The average value of each patients triplicate was combined to give a mean contraction at each time point.
Statistical analysis involved an ANOVA with posthoc Bonferroni correction. P < 0.001 was significant.
Results
Mast cells alone or with SP were unable to contract collagen gels. Joint capsule cells were able to contract the collagen gels and this was enhanced in the presence of SP, although not statistically significant. Joint capsule cells combined with mast cells enhanced the gel contraction more than joint capsule cells alone or with SP (p<0.001). The addition of SP accelerated the joint capsule cell-mediated gel contraction in the presence of mast cells the greatest (p<0.001 over all other conditions). The inhibitor RP67580 completely abolished the collagen gel contraction of the joint capsule cells in all conditions.
Conclusion
The in vitro experiment shows that joint capsule cell function, in the form of collagen gel contraction, is modified by the presence of mast cells and neuropeptides. These findings are significant as they strengthen the hypothesis that a myofibroblast mast cell neuropeptide fibrosis axis may be contributing to the joint capsule changes underling the loss of motion in post-traumatic joint contractures. In vivo studies with the rabbit model of post-traumatic contractures will be performed using the compounds examined in the current study.