Aims. Glucose-insulin-potassium (GIK) is protective following cardiac myocyte
Leucocytes represent a very important host defence against a number of invading pathogens and neoplasia. However, the activity of phagocytic leucocytes has been heavily implicated in the development of
Summary Statement. Ischaemic preconditioning protected skeletal myotubes against the effects of
Introduction: The paradoxical further damage done to ischaemic tissue when blood flow and oxygenation are restored is termed
Following
Introduction and Aims: To determine whether taurine influences skeletal muscle
Introduction: Limb reperfusion in patients following pneumatic tourniquet-controlled surgery is associated with nitric oxide (NO) generation. Meanwhile, NO mediates vascular endothelial growth factor (VEGF)-cytoprotection in myocardial
To determine whether systemic nitric oxide production in tourniquet-induced skeletal muscle ischaemia-reper-fusion injury (SMRI) is dependent on release of vascular endothelial growth factor (VEGF), a modulator of nitric oxide cytoprotection in myocardial
Acute respiratory distress syndrome is a long established complication and continuing cause of significant morbidity and mortality in the multiply injured patient. Systemic inflammatory response syndrome (SIRS) is classically associated with acute pulmonary dysfunction. A variety of insults including trauma, sepsis, hypoxia, ischaemia reperfusion, can trigger systemic inflammatory response and acute lung injury. In models of sepsis, endotoxaemia and
Introduction. Ischaemic preconditioning (IPC) is a phenomenon whereby a tissue is more tolerant to an insult if it is first subjected to short bursts of sublethal ischaemia and reperfusion. The potential of this powerful mechanism has been realised in many branches of medicine where there is an abundance of ongoing research. However, there has been a notable lack of development of the concept in Orthopaedic surgery. The routine use of tourniquet-controlled limb surgery and traumatic soft tissue damage are just two examples of where IPC could be utilised to beneficial effect in Orthopaedic surgery. Methods. We conducted a randomized controlled clinical trial looking at the role of a delayed remote IPC stimulus on a cohort of patients undergoing a total knee arthroplasty (TKA). We measured the effect of IPC by analysing gene expression in skeletal muscle samples from these patients. Specifically we looked at the expression of Heat shock protein-90 (HSP-90), Catalase and Cyclo-oxygenase-2 (COX-2) at the start of surgery and at one hour into surgery. Gene analysis was performed using real time polymerase chain reaction amplification. As a second arm to the project we developed an in-vitro model of IPC using a human skeletal muscle cell line. A model was developed, tested and subsequently used to produce a simulated IPC stimulus prior to a simulated
Compartment syndrome results from increased intra-compartmental
pressure (ICP) causing local tissue ischaemia and cell death, but
the systemic effects are not well described. We hypothesised that
compartment syndrome would have a profound effect not only on the affected
limb, but also on remote organs. Using a rat model of compartment syndrome, its systemic effects
on the viability of hepatocytes and on inflammation and circulation
were directly visualised using intravital video microscopy.Aims
Methods
Compartment syndrome, a devastating consequence
of limb trauma, is characterised by severe tissue injury and microvascular
perfusion deficits. We hypothesised that leucopenia might provide
significant protection against microvascular dysfunction and preserve
tissue viability. Using our clinically relevant rat model of compartment syndrome,
microvascular perfusion and tissue injury were directly visualised
by intravital video microscopy in leucopenic animals. We found that
while the tissue perfusion was similar in both groups (38.8% (standard
error of the mean ( Cite this article:
Compartment pressures have not previously been studied in healthy children. We compared the pressures in the four lower leg compartments of healthy children with those of healthy adults. We included patients aged between two months and six years, and measured the pressures in 80 compartments of 20 healthy children using simple needle manometry. Measurements were repeated in a control group of 20 healthy adults. The mean compartment pressure in the lower leg in children was significantly higher than in adults (p <
0.001). On average, pressures in the four compartments varied between 13.3 mmHg and 16.6 mmHg in the children and between 5.2 mmHg and 9.7 mmHg in the adults. The latter is in accordance with those recorded in the literature. The mean arterial pressure did not relate to age or to pressure in the compartment. The findings of this study that the normal compartment pressure of the lower leg in healthy children is significantly higher than that in adults may be of considerable significance in clinical decision-making in children of this age.
The aim of this retrospective multicentre study was to report the continued occurrence of compartment syndrome secondary to paediatric supracondylar humeral fractures in the period 1995 to 2005. The inclusion criteria were children with a closed, low-energy supracondylar fracture with no associated fractures or vascular compromise, who subsequently developed compartment syndrome. There were 11 patients (seven girls and four boys) identified from eight hospitals in three countries. Ten patients with severe elbow swelling documented at presentation had a mean delay before surgery of 22 hours (6 to 64). One patient without severe swelling documented at presentation suffered arterial entrapment following reduction, with a subsequent compartment syndrome requiring fasciotomy 25 hours after the index procedure. This series is noteworthy, as all patients had low-energy injuries and presented with an intact radial pulse. Significant swelling at presentation and delay in fracture reduction may be important warning signs for the development of a compartment syndrome in children with supracondylar fractures of the humerus.