Advertisement for orthosearch.org.uk
Results 1 - 20 of 36
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 9 - 9
17 Nov 2023
Lim JW Ball D Johnstone A
Full Access

Abstract. Objectives. Acute compartment syndrome (ACS) is a progressive form of muscle ischaemia that is a surgical emergency and can have detrimental outcomes for patients if not treated optimally. The current problem is that there is no clear diagnostic threshold for ACS or guidance as to when fasciotomies should be performed. A new diagnostic method(s) is necessary to provide real-time information about the extent of muscle ischaemia in ACS. Given that lactic acid is produced by cells through anaerobic respiration, it may be possible to measure H+ ion concentration and to use this as a measure of ischaemia within muscle. Although we are familiar with the key biochemical metabolites involved in ischaemia; and the use of viability dyes in cell culture to distinguish between living or dead cells is well recognised; research has not been undertaken to correlate the biochemical and histological findings of ischaemia in skeletal muscle biopsies. Our primary aim was to investigate the potential for viability dyes to be used on live skeletal muscle biopsies (explants). Our secondary aim was to correlate the intramuscular pH readings with muscle biopsy viability. Methods. Nine euthanised Wistar rats were used. A pH catheter was inserted into one exposed gluteus medius muscles to record real-time pH levels and muscle biopsies were taken from the contralateral gluteus medius at the start of experiment and subsequently at every 0.1 of pH unit drop. Prior to muscle biopsy, the surface of the gluteus medius was painted with a layer of 50µmol/l Brilliant blue FCF solution to facilitate biopsy orientation. A 4mm punch biopsy tool was used to take biopsies. Each muscle biopsy was placed in a base mould filled with 4% ultra-low melting point agarose. The agarose embedded tissue block was sectioned to generate 400 micron thick tissue slices with a vibratome. The tissue slices were then placed in the staining solution with Hoechst 33342, Ethidium homodimer-1 and Calcein am. The tissue slices were imaged with Zeiss LSM880 confocal microscope's Z stack function. A dead muscle control was created by adding TritonX-100 to other tissue slices. For quantitative analyses, the images were analysed in Image J using the selection tool. This permitted individual cells to be identified and the mean grey value of each channel to be defined. Using the dead control, we were able to identify the threshold value for living cells using the Calcein AM channel. Results. Viability dyes, used primarily for cell cultures, can be used with skeletal muscle explants. Our study also showed that despite a significant reduction in tissue pH concentration over time, that almost 100% of muscle cells were still viable at pH 6.0, suggesting that skeletal muscle cells are robust to hypoxic insult in the absence of reperfusion. Conclusions. Viability dyes can be used on skeletal muscle biopsies. Further research investigating the likely associations between direct measured pH using a pH catheter, the concentrations of key cellular metabolic markers, and muscle tissue histology using vitality dyes in response to ischaemia, rather than hypoxia, is warranted. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 10 - 10
17 Nov 2023
Lim JW Ball D Johnstone A
Full Access

Abstract. Background. Progressive muscle ischaemia results in reduced aerobic respiration and increased anaerobic respiration, as cells attempt to survive in a hypoxic environment. Acute compartment syndrome (ACS) is a progressive form of muscle ischaemia that is a surgical emergency resulting in the production of Lactic acid by cells through anaerobic respiration. Our previous research has shown that it is possible to measure H+ ions concentration (pH) as a measure of progressive muscle ischaemia (in vivo) and hypoxia (in vitro). Our aim was to correlate intramuscular pH readings and cell viability techniques with the intramuscular concentration of key metabolic biomarkers [adenosine triphosphate (ATP), Phosphocreatine (PCr), lactate and pyruvate], to assess overall cell health in a hypoxic tissue model. Methods. Nine euthanised Wistar rats were used in a non-circulatory model. A pH catheter was used to measure real-time pH levels from one of the exposed gluteus medius muscles, while muscle biopsies were taken from the contralateral gluteus medius at the start of the experiment and subsequently at every 0.1 of a pH unit decline. The metabolic biomarkers were extracted from the snap frozen muscle biopsies and analyzed with standard fluorimetric method. Another set of biopsies were stained with Hoechst 33342, Ethidium homodimer-1 and Calcein am and imaged with a Zeiss LSM880 confocal microscope. Results. Our study shows that the direct pH electrode readings decrease with time and took an average of 69 minutes to drop to a pH of 6.0. The concentrations of ATP, pyruvate and PCr declined over time, and the concentration of lactate increased over time. At pH 6.0, both ATP and PCr concentrations had decreased by 20% and pyruvate has decreased by 50%, whereas lactate had increased 6-fold. The majority of cells were still viable at a pH of 6.0, suggesting that skeletal muscle cells are remarkably robust to hypoxic insult, although this was a hypoxic model where reperfusion was not possible. Conclusions. Our research suggests that histologically, skeletal muscle cells are remarkably robust to hypoxic insult despite the reduction in the total adenine nucleotide pool, but this may not reflect the full extent of cell injury and quite possibly irreversible injury. The timely restoration of blood flow in theory should halt the hypoxic insult, but late reperfusion results in cellular dysfunction and cell death due to localised free radical formation. Further research investigating the effects of reperfusion in vivo are warranted, as this may identify an optimal time for using pharmacological agents to limit reperfusion injury, around the time of fasciotomy to treat acute compartment syndrome. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 48 - 48
4 Apr 2023
Yang Y Li Y Pan Q Wang H Bai S Pan X Ling K Li G
Full Access

Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remain a challenge. A novel surgical technique named Tibial Cortex Transverse Transport has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In present study, we aimed to explore the wound healing effects after undergoing this novel technique via multiple ways. A novel rat model of Tibial Cortex Transverse Transport was established with a designed external fixator and effects on wound healing were investigated. All rats were randomized into 3 groups, with 12 rats per group: sham group (negative control), fixator group (positive control) and Tibial Cortex Transverse Transport group. Laser speckle perfusion imaging, vessel perfusion, histology and immunohistochemistry were used to evaluate the wound healing processes. Gross and histological examinations showed that Tibial Cortex Transverse Transport technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In Tibial Cortex Transverse Transport group, HE staining demonstrated a better epidermis and dermis recovery, while immune-histochemical staining showed that Tibial Cortex Transverse Transport technique promoted local collagen deposition. Tibial Cortex Transverse Transport technique also benefited to angiogenesis and immunomodulation. In Tibial Cortex Transverse Transport group, blood flow in the wound area was higher than that ofother groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the Tibial Cortex Transverse Transport group with double immune-labelling of CD31 and α-SMA. The M2 macrophages at the wound site in the Tibial Cortex Transverse Transport group was also increased. Tibial cortex transverse transport technique accelerated wound healing through enhanced angiogenesis and immunomodulation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 102 - 102
2 Jan 2024
Elbahi A Wasim M Yusuf K Thilagarajah M
Full Access

Tourniquet is a commonly used tool in orthopaedic practice. Incidence of complications is low but if any develops, it is devastating. Transient nerve damage, ischemia or skin burns are the possible tourniquet related complications. There is big variation in practice regarding the limb occlusion pressure. 51 procedures in 50 patients were reviewed retrospectively in our district general hospital. We looked at quality of documentation guided by the BOAST standard (The Safe Use of Intraoperative Tourniquets, published in October 2021). Limb occlusion pressure and ischemic time were analysed. Intra-operative and post-operative notes were reviewed to assess quality of documentation and post-operative complications. Although limb occlusion pressure was above the recommended range in more than 75% of cases, there were no significant complications observed. Two cases only developed transient neuropraxia in common peroneal nerve and median nerve following tibial plateau ORIF and trapeziectomy simultaneously. Tibial ORIF fixation case had prolonged ischemic time (more than 120 minutes) and the limb occlusion pressure for the hand case was above the recommended range. Both have recovered within few days with no long-term consequences. Minimum documentation threshold was not met with regarding tourniquet site condition, method of skin isolation and padding, and exsanguination method. This relatively new standard with no previous similar guidance needs time until it is followed by the health care professionals especially when there is no high incidence of complications related to the use of the tourniquet. However, it is crucial to increase the theatre staff awareness of such standards. This will prevent devastating complications specifically in vulnerable patients. Adjustments to theatre checklist have been suggested to improved documentation. Additionally, local teaching sessions will be delivered to theatre personnel aiming at improving our compliance to this standard


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 295 - 295
1 Jul 2014
Walsh P Mulhall K
Full Access

Summary Statement. Ischaemic preconditioning protected skeletal myotubes against the effects of ischaemia-reperfusion in vitro. This protection was associated with increased Nrf2 signalling. Introduction. Ischaemic preconditioning (IPC) is a well recognised and powerful phenomenon where a tissue becomes more tolerant to a period of prolonged ischaemia when it is first subjected to short bursts of ischaemia/reperfusion. While much is known about the ability of ischaemic preconditioning to protect myocardial tissue against ischaemia-reperfusion injury, its potential to confer benefit in an orthopaedic setting by protecting skeletal muscle remains relatively unexplored to date. One mechanism by which ischaemic preconditioning may induce protection is through a reduction in oxidative stress. Reactive oxygen species (ROS) are generated both during prolonged ischaemia and also upon reperfusion by infiltrating neutrophils, thereby leading to an increase in oxidative stress. The transcription factor, NF-E2-related factor 2 (Nrf2), is a key regulator of the cells response to oxidative stress as it regulates the expression of a network of anti-oxidant/detoxifying enzymes. Nrf2 signalling has recently been shown to protect against ischaemia-reperfusion injury in both a kidney cell line and in liver biopsies, indicating that this transcription factor may play a key role in the protection provided by ischaemic preconditioning. To date, the involvement of Nrf2 in the response of skeletal muscle to ischaemia-reperfusion has not been investigated. Thus, the aims of this study were to investigate the ability of ischaemic preconditioning to protect skeletal myotubes against ischaemia-reperfusion and to determine the role of Nrf2 signalling in this protection. Materials & Methods. C2C12 mouse myoblasts were maintained at 37. o. C in a humidified atmosphere of 95% air and 5% CO. 2. in DMEM containing 20% FBS. When cultures were approximately 90% confluent, myoblasts were differentiated to myotubes by changing to DMEM supplemented with 2% horse serum and culturing for 7–10 days. Differentiated myotubes were then exposed to simulated ischaemia for 4h (1% O. 2. ) followed by 2h reoxygenation (21% O. 2. ). To precondition myotubes, cells were subjected to 30 min of simulated ischaemia followed by 1 hour reoxygenation prior to the prolonged ischaemic event. Cell survival was assessed by lactate dehydrogenase release. Changes in Nrf2 expression were assessed using real-time PCR, Western blotting and immunofluorescence. Changes in sequestosome-1 (SQSTM1), catalase (CAT), glutathione S-transferase theta-1 (GSTT1), heme oxygenase-1 (HO-1) expression were assessed using a combination of real-time PCR and Western blotting. Results. Preconditioned myotubes showed greater viability both after 4h of ischaemia, and after 4h ischaemia followed by 2h of reoxygenation. This increase in cell viability was associated with increased Nrf2 expression. In addition, increased expression of SQSTM1, and the antioxidant enzymes, CAT, GSTT1 and HO-1 was observed in preconditioned myotubes. Discussion. Our findings indicate that ischaemic preconditioning can protect skeletal myotubes against the effects of ischaemia-reperfusion in vitro. This protection is associated with increased Nrf2 signalling indicating that this transcription factor may play a role in mediating the protection induced by ischaemic preconditioning. By modulating the response of skeletal muscle to ischaemia, ischaemic preconditioning has the potential to limit reperfusion injury, which in turn, may lead to improvements in outcome following orthopaedic surgery


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 8 | Pages 1189 - 1193
1 Nov 2002
Bushell AJ Klenerman L Davies H Grierson I McArdle A Jackson MJ

We have previously shown that prior exposure of rat hind limbs to ischaemia for five minutes and reperfusion for five minutes reduced the structural damage to skeletal muscle which followed a subsequent period of ischaemia for four hours and reperfusion for one hour. We have now examined the potential mechanisms by which this ischaemic preconditioning protocol may be effective in reducing damage to skeletal muscle induced by prolonged ischaemia and reperfusion. Prior exposure of the hindlimb to ischaemia for five minutes and reperfusion for five minutes did not prevent the fall in the ATP content of tibialis anterior which occurred after a subsequent period of ischaemia for four hours and reperfusion for one hour. Similarly, no effect of the preconditioning protocol was seen on the elevated muscle myeloperoxidase, indicative of an elevated neutrophil content, or abnormal muscle cation content. Reperfused ischaemic muscle was also found to have an increased content of heat-shock protein (HSP) 72, but the preconditioning protocol did not further increase the content of this or other HSPs indicating that it was not acting by increasing the expression of these cytoprotective proteins. The protective effects of preconditioning appeared to be mimicked by the infusion of adenosine to animals immediately before exposure to the four-hour period, indicating a potential mechanism by which skeletal muscle may be preconditioned to maintain structural viability


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 8 | Pages 1184 - 1188
1 Nov 2002
Bushell AJ Klenerman L Taylor S Davies H Grierson I Helliwell TR Jackson MJ

Ischaemic preconditioning is a process by which exposure of a tissue to a short period of non-damaging ischaemic stress leads to resistance to the deleterious effects of a subsequent prolonged ischaemic stress. It has been extensively described in the heart, but few studies have examined the possibility that it can occur in skeletal muscle. We have used a rat model of ischaemia of one limb to examine this possibility. Exposure of the hind limb to a period of ischaemia of five minutes and reperfusion for five minutes significantly protected the tibialis anterior muscle against the structural damage induced by a subsequent period of limb ischaemia for four hours and reperfusion for one hour. This protection was evident on examination of the muscle by both light and electron microscopy. Longer or shorter times of prior ischaemia had no effect


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 12 - 12
1 May 2017
Gibbs V Wall P Sprowson A Hutchinson C Ngandwe E Price A
Full Access

Background. Traditionally, a Surgical Tourniquet (ST) is used during Total Knee Replacement Surgery (TKRS) to prevent blood flow to the leg and improve the surgical field of view. The use of a ST is known to increase the risk of venous thromboembolism. Echogenic material, suggestive of emboli has been observed in the brain following ST deflation in TKRS despite the absence of a patent foramen ovale, likely through pulmonary shunts. The aim of this study was to assess whether cerebral emboli result from tourniquet use in TKRS and the sequelae of any emboli. Methods. 11 subjects from a single centre undergoing routine TKRS with a ST gave informed consent. Each participant had diffusion weighted MR brain imaging prior to, and within 48 hours after TKRS and completed pre and post-operative mini-mental state examinations (MMSE). Results. Pre and post-operative MR imaging were assessed by a senior radiologist and the results were reported according to Age and Cognitive Performance Research Centre (ACPRC) rating scale. There were no changes from pre and post-operative MR scans. 4 participants (36%) had no change in MMSE scores. These participants had a score of 1 or 0 in both MR scans. 7 participants (63%) had a score of 2 or 3. These participants had mean 2.8 point (9.5%) drop on MMSE (IQR = 1) within 48 hours. Conclusions. In this small, exploratory study we found no evidence of discrete cerebral emboli occurring with the use of ST in TKRS. Interestingly, participants noted to have minimal or no pre-operative ischaemic change appeared to maintain more cognitive function post-operatively than those with higher levels of pre-existing ischaemia. Subtle changes in ischaemic load in patients with pre-existing ischaemia may lead to impaired cognitive function, however further evidence is required to confirm this theory. Level of Evidence. III. Approval. Protocol approved by NRES Committee Yorkshire & The Humber, Leeds West and The Research, Development & Innovation Department University Hospitals Coventry & Warwickshire


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 4 - 4
1 Aug 2012
McGuire C Walsh P Mulhall PK
Full Access

OBJECTIVES. Ischaemic preconditioning (IPC) is a phenomenon whereby tissues develop an increased tolerance to ischaemia and subsequent reperfusion if first subjected to sublethal periods of ischaemia. Despite extensive investigation of IPC, the molecular mechanism remains largely unknown. Our aim was to show genetic changes that occur in skeletal muscle cells in response to IPC. METHODS. Firstly, we established an in-vitro model of IPC using a human skeletal muscle cell line. Gene expression of both control and preconditioned cells at various time points was determined. The genes examined were HIF-1 alpha, EGR1, JUN, FOS, and DUSP1. HIF-1 alpha is a marker of hypoxia. EGR1, JUN, FOS and DUSP1 are early response genes and may play a role in the protective responses induced by IPC. Secondly, the expression of HSPB8 was examined in a cohort of preconditioned total knee arthroplasty patients. RESULTS. HIF-1 alpha was upregulated following 1 and 2 hours of simulated ischaemia (p = 0.076 and 0.841 respectively) verifying that hypoxic conditions were met using our model. Expression of EGR1, FOS and DUSP1 were upregulated and peaked after 1 hour of hypoxia (p = 0.001, <0.00, and 0.038 respectively). cFOS was upregulated at 2 and 3 hours of hypoxia. IPC prior to simulated hypoxia resulted in a greater level of upregulation of EGR1, JUN and FOS genes (p = <0.00, 0.047, and <0.00 respectively). HSPB8 was not significantly upregulated following IPC using the hypoxic model. It was, however, upregulated on an mRNA level in total knee arthroplasty patients (p = 0.15). CONCLUSION. This study has validated the use of our hypoxic model for studying IPC in-vitro. IPC results in a greater upregulation of protective genes in skeletal muscle cells exposed to hypoxia than in control cells. We have demonstrated hitherto unknown molecular mechanisms of IPC in cell culture and in patients undergoing TKA


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 117 - 117
1 Jul 2014
Deschepper M Paquet J Petite H
Full Access

Introduction. The use of mesenchymal stem cells in regenerative medicine remains a promising approach due to the ability of these cells to differentiate into a variety of cell types of mesodermal lineage. Today, however, it is not clear whether long-term differentiation of MSCs is necessary or alternatively whether the benefits of MSCs can be conferred by transitory paracrine effects (via secreted chemical compounds). Human MSCs secrete a broad variety of cytokines, chemokines and growth factors that may potentially be involved in tissue repair. Nevertheless, hMSCs secretome profile is closely related to cells biological and chemical environment (pO. 2. , inflammation, nutrients disponibility…). In the context of stem-cell-based regenerative medicine, upon implantation, hMSC are exposed to stresses such as ischemia, oxidative stress and inflammatory mediators. Knowledge of the paracrine properties of stem cells under hypoxic conditions is essential for planning appropriate strategies that overcome the potential negative impacts of all levels of low oxygen content (from hypoxiato anoxia) leading to ischemia and tissue necrosis pertinent to MSC-based tissue engineered constructs. Since the beneficial effects of stem cells may be confered predominantly indirectly through paracrine mechanisms, the present study was designed to characterise the hMSC secretome and to assess its biological effects considering oxygen level and nutrients disponibility. Methods. hMSCs were exposed in vitro either to sustain ischemic environment (pO. 2. ≤ 0.1%, serum deprived), to hypoxia (pO. 2. ≤ 0.1%, 5g/L glucose) or to normoxic conditions (pO. 2. =21%). We used an hypoxic station (Biospherix, US) to ensure sustained hypoxia during 21 days. Levels of angiogenic, chemo-attractant, inflammatory and immunomodulative mediators were assessed in supernatants using the luminex technology (milliplex KIT, Millipore, USA). The chemo-attractant potential of conditioned media (CM) was assessed in vitro using Boyden chambers (BD, USA). To assess angiogenic potential of CM, HEPC were seeded on matrigel for 18 hours with CM obtained from hMSCs. Functionnality of secreted mediators was also assessed in vivo: briefly, CM media were lyophilyzed on collagen sponges and ectopically implanted in nude mice. Chemo-attraction and vascularization of the implants were determined using histological and CTscan analysis. Results. This study shows that the release of mediators by hMSCs is a function of nutrient availability whatever the pO. 2. considered. Moreover, hypoxia promotes a specific secretome profile of chemo-attractive and pro-angiogenic mediators from hMSCs, inflammatory/immunomodulative mediators and growth factors are not expressed in a hypoxic environment. The bioactivity of these mediators was confirmed by in vitro and in vivo tests. In addition, hMSCs chemo-attractive and pro-angiogenic potential is increased by glucose supply. Discussion and Conclusion. By using an in vitro model of ischemia/hypoxia, we first demonstrated that hMSC secretome is deeply affected, quantitatively and qualitatively, by the presence or no of nutrients (ie glucose) under hypoxia. Moreover, the present study shows selectivity in mediators produced by hMSCs in a hypoxic environment. Immunomodulatives and inflammatory mediators currently described to be secreted by hMSCs, under “normoxic conditions”, are not expressed and secretome profile is focused on pro-angiogenic and chemo-attractive chemical compounds


Bone & Joint Research
Vol. 3, Issue 4 | Pages 130 - 138
1 Apr 2014
Shapiro F Connolly S Zurakowski D Flynn E Jaramillo D

Objectives. An experimental piglet model induces avascular necrosis (AVN) and deformation of the femoral head but its secondary effects on the developing acetabulum have not been studied. The aim of this study was to assess the development of secondary acetabular deformation following femoral head ischemia. Methods. Intracapsular circumferential ligation at the base of the femoral neck and sectioning of the ligamentum teres were performed in three week old piglets. MRI was then used for qualitative and quantitative studies of the acetabula in operated and non-operated hips in eight piglets from 48 hours to eight weeks post-surgery. Specimen photographs and histological sections of the acetabula were done at the end of the study. . Results. The operated-side acetabula were wider, shallower and misshapen, with flattened labral edges. At eight weeks, increased acetabular cartilage thickness characterised the operated sides compared with non-operated sides (p < 0.001, ANOVA). The mean acetabular width on the operated side was increased (p = 0.015) while acetabular depth was decreased anteriorly (p = 0.007) and posteriorly (p = 0.44). The cartilage was thicker, with delayed acetabular bone formation, and showed increased vascularisation with fibrosis laterally and focal degenerative changes involving chondrocyte hypocellularity, chondrocyte cloning, peripheral pannus formation and surface fibrillation. . Conclusions. We demonstrate that femoral head AVN in the young growing piglet also induced, and was coupled with, secondary malformation in acetabular shape affecting both articular and adjacent pelvic cartilage structure, and acetabular bone. The femoral head model inducing AVN can also be applied to studies of acetabular maldevelopment, which is less well understood in terms of developing hip malformation. Cite this article: Bone Joint Res 2014;3:130–8


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 238 - 238
1 Jul 2014
Deschepper M Paquet J Manassero M Logeart-Avramoglou D Bensidhoum M Petite H
Full Access

Summary. In this study, we challenged the current paradigm of human Mesenchymal Stem Cells survival, which assigned a pivotal role to oxygen, by testing the hypothesis that exogenous glucose may be key to their survival. Introduction. The survival of human mesenchymal stem cells (hMSCs) has elicited a great deal of interest, because it is relevant to the efficacy of engineered tissues. However, to date, hMSCs have not met this promise, in part due to the high death rate of cells upon transplantation. In this study, we challenged the current paradigm of hMSC survival, which assigned a pivotal role to oxygen, by testing the hypothesis that exogenous glucose may be key to hMSC survival. Materials and methods. In vitro model of ischemia 2.10. 4. hMSCs from five donors, were seeded into individual wells of a 24-well plate, cultured overnight, washed twice with PBS and then maintained in hypoxia (0.1% oxygen) under serum (FBS) free αMEM medium in either the absence or in the presence (1 or 5 g/L) of glucose for 21 days. In vitro Cell viability: To assess the role of glucose on hMSCs viability, cells were cultured under hypoxia in the absence or in the presence of glucose (1 and 5g/L), At days 0, 3, 7, 14 and 21, cell viability was evaluated by flow cytometry and ATP content per cell quantified. In vivo effect of glucose supply on hMSCs viability. 3.10. 5. eGFG-luc hMSCs were seeded on a cylindrical AN-69 scaffolds. At the time of implantation, 100 µl of hyaluronic acide (HA) (2%) containing either 0g/L (negative control) or 10g/L of glucose was gently injected inside the construct. Cell- constructs were implanted subcutaneously in eight week-old mice (2 per animal) and were imaged by bioluminescence imaging (BLI) at day 1, 4, 7 and 14 until sacrifice. Results. hMSCs were able to survive and to maintain their ATP content 21 days under sustained hypoxia providing that they were cultured in the presence of a sufficient glucose supply (i.e. 5g/L). In contrast, hMSCs cultured without or with 1g/L of glucose failed to survive. These results established that glucose depletion but not sustained hypoxia affected cell survival. In vivo results showed a striking increase of cell viability in cell constructs loaded with glucose. At day 14, a five-fold increase in cell number was observed in cell constructs loaded with glucose when compared to the control cell constructs without glucose. Discussion. The present study challenge the current paradigm that gives a pivotal role to oxygen on hMSCs massive cell death. By using an in vitro model of hypoxia/ischemia, we demonstrated that in the presence of sufficient glucose, hMSCs were able to survive 21 days under sustained hypoxia. Most importantly, an appropriate glucose supply strongly increases cell viability of hMSCs implanted subcutaneously in a mice model. This study provides evidences that glucose depletion but not hypoxia affects hMSCs viability. Further investigations need to be performed to develop hydrogels that ensure continuous glucose delivery to the implanted cells. Theses findings are particularly relevant because they pave the way to the development of new delivery systems to ensure hMSCs viability in order to increase their therapeutical potential after implantation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 345 - 345
1 Jul 2014
Ikemura S Yamamoto T Motomura G Yamaguchi R Mawatari T Iwamoto Y
Full Access

Summary Statement. The incidence of osteonecrosis was significantly lower in the anti-vasospasm agent group (32%) than that in the control group (75%). Vasospasm is one of the important factors involved in the pathogenesis of steroid-induced osteonecrosis. Introduction. A number of studies have suggested that ischemia is the principal pathomechanism of osteonecrosis, however, the detailed mechanism responsible for ischemia remains unclear. It has recently been reported that the Rho/Rho-kinase mediated pathway (Rho-kinase pathway) is considered to be involved in the possible pathogenesis of various cardiovascular disorders as well as cerebral vasospasm. We examined the effects of fasudil (Rho-kinase inhibitor), an anti-vasospasm agent, on the development of steroid-induced osteonecrosis in rabbits. Materials & Methods. One group of rabbits received 15 mg/kg of fasudil intravenously, which were then injected once intramuscularly with 20 mg/kg of methylprednisolone (n = 33, MF group), and one received methylprednisolone alone as a control (n = 28, M group). Eight rabbits from each group were sacrificed 24 hour after the methylprednisolone injection to analyze them by immunohistochemical staining, a Western blotting analysis. Two weeks after the steroid injection, the femora and humeri were examined histopathologically for the incidence of osteonecrosis. Results. The incidence of osteonecrosis was significantly lower in the MF group (32%) than that in the M group (75%) (P < 0.01). Immunohistochemically, endothelin. A. -receptor (ET. A. Rc) expressions levels were decreased in the smooth muscle of the bone marrow in the MF group in comparison to that in the M group. In the M group, the average relative phospho-myosin light chain (p-MLC) expression level in the bone marrow tissue was significantly higher than that observed in the MF group (P < 0.01). In the MF group, the average relative total-eNOS expression level as well as the average relative phospho-eNOS (p-eNOS) expression level was almost 1.5 times higher than that observed in the M group (P < 0.05). The eNOS expressions levels in both serum and bone marrow in the MF group were significantly higher than those in the M group (P < 0.05). Discussion/Conclusion. The potential mechanisms resulting in vasospasm include the increased release of vasoconstrictors or increased sensitivity to these vasoconstrictors. ET-1 has been demonstrated to cause vascular smooth muscle cell constriction via ET. A. Rc stimulation. The expression of ET. A. Rc in rabbits treated with methylprednisolone plus fasudil (MF group) decreased in comparison with that in rabbits treated with the methylprednisolone alone (M group). In this study, both the eNOS and p-eNOS expressions levels in the M group were decreased in comparison to those observed in the MF group. A previous study suggested that high-dose steroid administration causes the overproduction of reactive oxygen species, and thereby perturbs nitric oxide (NO) availability in the vascular endothelium, leading to vascular endothelial dysfunction in patients receiving high-dose steroid therapy. Considering the pathogenesis of the development of osteonecrosis, we speculate that endothelial dysfunction may thus be a preliminary condition leading to the vasospasm. In conclusion, this study indicates that vasospasm is one of the important factors involved in the pathogenesis of steroid-induced osteonecrosis and that the anti-vasospasm agents seem to decrease the incidence of steroid-induced osteonecrosis


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 751 - 759
1 Jul 2001
Sato M Sugano N Ohzono K Nomura S Kitamura Y Tsukamoto Y Ogawa S

Using in situ hybridisation and the terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end-labelling (TUNEL) reaction in rats with osteonecrosis of the femoral head we have studied the effect of ischaemia on the gene expression of the stress proteins oxygen-regulated protein 150 (ORP150) and haemoxygenase 1 (HO1) and the death mechanism of the cells involved in osteonecrosis. Both ORP150 and HO1 have been reported to have important roles in the successful adaptation to oxygen deprivation. ORP150 and HO1 mRNA expression was induced by ischaemia in osteoblasts and osteocytes. In proliferative chondrocytes, these signals were detected constitutively. During the development of ischaemic osteonecrosis, the mechanism of cell death was apoptosis as indicated by DNA fragmentation and the presence of apoptotic bodies in osteocytes, chondrocytes and bone-marrow cells. After the initial ischaemic event, expression of ORP150 and HO1 mRNA, the TUNEL-positive reaction and empty lacunae were found sequentially. These findings were exclusive and may be considered to be markers for each stage in the development of osteonecrosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 27 - 27
1 May 2012
Magill P Walsh P Murphy T Mulhall K
Full Access

Introduction. Ischaemic preconditioning (IPC) is a phenomenon whereby a tissue is more tolerant to an insult if it is first subjected to short bursts of sublethal ischaemia and reperfusion. The potential of this powerful mechanism has been realised in many branches of medicine where there is an abundance of ongoing research. However, there has been a notable lack of development of the concept in Orthopaedic surgery. The routine use of tourniquet-controlled limb surgery and traumatic soft tissue damage are just two examples of where IPC could be utilised to beneficial effect in Orthopaedic surgery. Methods. We conducted a randomized controlled clinical trial looking at the role of a delayed remote IPC stimulus on a cohort of patients undergoing a total knee arthroplasty (TKA). We measured the effect of IPC by analysing gene expression in skeletal muscle samples from these patients. Specifically we looked at the expression of Heat shock protein-90 (HSP-90), Catalase and Cyclo-oxygenase-2 (COX-2) at the start of surgery and at one hour into surgery. Gene analysis was performed using real time polymerase chain reaction amplification. As a second arm to the project we developed an in-vitro model of IPC using a human skeletal muscle cell line. A model was developed, tested and subsequently used to produce a simulated IPC stimulus prior to a simulated ischaemia-reperfusion (IR) injury. The effect of this on cell viability was investigated using crystal violet staining. Results. In the clinical arm of the study 4 patients were randomized to a control group and 4 randomized to IPC. Operative and post-operative periods were without any adverse incident. For each gene in question there was a different pattern in expression. COX-2 showed an initial up-regulation of 1.43 (p=0.83) at the start of surgery and a subsequent down-regulation of 0.07 (p=0.01) at one hour into surgery. Catalase expression was lower than control at the start of surgery (0.62, p= 0.46) and at one hour into surgery (0.5, p=0.1). HSP-90 expression was initially lower than control at the start of surgery (0.59, p= 0.07) then up-regulated at one hour into surgery (1.13, p=0.62). In the in-vitro section of the study we found that 15 hours of simulated ischaemia was required for a cell death of approximately 50 % (p=0.00001). The introduction of a simulated IPC stimulus increased cell death at a 1 hour reperfusion time-point (IPC group had 18% more cell death than IR group, p=0.003) and at a 24 hour reperfusion time-point (IPC group had 19% more cell death than IR group, p= 0.00001). At a 72 hours reperfusion time-point the IPC group had a 30% greater survival than the IR group (p=0.000006). Conclusion. Our clinical study was subject to small sample size. Despite this it suggests a particular importance of COX-2 in the IPC mechanism. The in-vitro model we developed is an essential resource for further studies into IPC in Orthopaedic Surgery. Preliminary results from this model point towards the ‘second window of protection’ of IPC as a stronger phenomenon than immediate preconditioning


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 116 - 120
1 Jan 2007
Laing AJ Dillon JP Condon E Coffey JC Street JT Wang JH McGuinness AJ Redmond HP

Post-natal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells migrate, differentiate and incorporate into the nacent endothelium and thereby contribute to physiological and pathological neurovascularisation, has stimulated much interest. Its contribution to neovascularisation of tumours, wound healing and revascularisation associated with ischaemia of skeletal and cardiac muscles is well established. We evaluated the responses of endothelial precursor cells in bone marrow to musculoskeletal trauma in mice. Bone marrow from six C57 Black 6 mice subjected to a standardised, closed fracture of the femur, was analysed for the combined expression of cell-surface markers stem cell antigen 1 (sca-1. +. ) and stem cell factor receptor, CD117 (c-kit. +. ) in order to identify the endothelial precursor cell population. Immunomagnetically-enriched sca-1. +. mononuclear cell (MNC. sca-1+. ) populations were then cultured and examined for functional vascular endothelial differentiation. Bone marrow MNC. sca-1+,c-kit+. counts increased almost twofold within 48 hours of the event, compared with baseline levels, before decreasing by 72 hours. Sca-1. +. mononuclear cell populations in culture from samples of bone marrow at 48 hours bound together Ulex Europus-1, and incorporated fluorescent 1,1′-dioctadecyl- 3,3,3,’3′-tetramethylindocarbocyanine perchlorate-labelled acetylated low-density lipoprotein intracellularily, both characteristics of mature endothelium. Our findings suggest that a systemic provascular response of bone marrow is initiated by musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of neovascularisation and the healing of fractures


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 1 - 1
1 Apr 2017
Walkden G Lewis S Soar J
Full Access

Background. The National Confidential Enquiry into Perioperative Deaths recommends that high-dependency (HDU) or intensive care unit (ICU) care is available following arthroplasty. In hospitals without dedicated post-operative care units, patients can be transferred to wards more rapidly, which is associated with adverse surgical outcome, increased morbidity & mortality and unplanned HDU/ICU admission. Pre-operative assessment clinics (POAC) have been demonstrated to reduce these adverse outcomes. We present an evaluation of HDU/ICU admissions and a micro-cost effectiveness evaluation of POAC and planned HDU/ICU admission in hip/knee arthroplasty. Methods. Data were obtained retrospectively for all patients undergoing hip/knee arthroplasty between 01/06/2013–30/06/2014 at North Bristol NHS Trust. n=2258 admissions were linked across coding, ICU (WardWatcher), and Myocardial Ischaemia National Audit Project databases. POAC records and patient notes were hand-searched for n=83 admissions to HDU/ICU. Cost estimates were derived from clinical coding and length-of-stay. The work was performed in STATA and registered under Trust ID 15545. Results. Over eleven months, n=1917 elective arthoplasties were performed, with zero in-hospital deaths and n=68 transferred to HDU/ICU post-operatively. Unplanned HDU/ICU admissions (n=23; 33.8%) were outnumbered by planned admissions (n=38; 55.9%). Hospital length-of-stay was significantly longer (p<0.01) following unplanned HDU/ICU admission, 19.0±22.0 days, compared with planned HDU/ICU admission, 7.5±8.0 days. No significant difference was detected in the proportion of unplanned or planned HDU/ICU admissions that attended anaesthetist POAC (60.9 vs. 68.4%, p=0.59). The total cost of elective arthroplasty with an unplanned (£12200) or planned HDU/ICU admission (£7600) differed by £4500. Conclusions. Our in-hospital mortality compares favourably with published estimates. Unplanned HDU/ICU admission was associated with an increased cost of £4500 per arthroplasty, largely due to increased hospital length-of-stay. 39.1% of patients who required unplanned admission to HDU/ICU were not invited to POAC, which may represent a missed opportunity for reducing post-arthroplasty morbidity and costs. Level of evidence. 2c


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 35 - 35
1 Mar 2012
Chang JS Kim JW Bae JY Jung KH Ryu JS Baek S Oh HK
Full Access

Introduction. We have evaluated the circulation of the femoral head after multiple pinning for femoral neck fractures by bone SPECT. Methods. Forty-four patients (33 women, 11 men, who had a mean age of 67 years) were enrolled prospectively. Early and late bone SPECT images were obtained on 2 to 13 days and 3 months after surgery and follow-up periods were over 12 months (average, 29 months). Results. Seventeen cases showed normal uptake on early bone SPECT and healed successfully. Twenty-seven cases showed decreased uptake on early bone SPECT. Among these 27 cases, reperfusion was confirmed in 18 cases (66.7%) by late bone SPECT. The remaining 9 cases showed no recovery and the femoral heads were collapsed eventually. According to the Garden classification, osteonecrosis was found in 4 of 28 cases (14.3%) in Type I, 2 of, 15 cases (13.3%) in Type II, 3 of 6 cases (50%) in Type III and osteonecrosis was not detected in the one Type IV case. Conclusion. In summary, bone SPECT is very sensitive and vascular insufficiency could be found even in the early post-operative period. Cases with normal uptake showed successful union. But, bone SPECT in early post-operative periods cannot be used to predict final outcome, as 66.7% of cases were recovered from ischemia. Although osteonecrosis was higher in cases with displacement, we should be careful for impacted fractures (Type I) as the incidence of osteonecrosis was not low


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 351 - 351
1 Jul 2014
Ouellette E Yang S Morris J Makowski A Fung W
Full Access

Summary. Arthroscopic decompression of the lunate decreases clinical symptoms and slows progression of Kienböck's Disease. Introduction. The purpose of this study was to investigate the outcomes of patients suffering from avascular necrosis of the lunate, or Kienböck's Disease, who received arthroscopic decompression to treat the ischemic lunate. Previous studies have demonstrated an elevated intraosseus pressure in the ischemic lunate, and it has been hypothesised that ischemia in the lunate is secondary to this elevated pressure and subsequent venous congestion, as opposed to diminished arterial supply. Based on this work we have used decompression of the lunate to prevent progression of the disease. Patients and Methods. 21 patients, (22 wrists), reported to a single surgeon with a chief complaint of unremitting wrist pain and the subsequent diagnosis was Kienböck's disease, stages I, II, IIIA or IIIB. Range of motion measurement and grip strength, as well as self-reported outcome measures such as Disabilities of the Arm, Shoulder and Hand (DASH) and Modified Mayo, were obtained preoperatively and post operatively at 2, 7 and 12 months. The patients were treated operatively with arthroscopic decompression of the lunate. The lunate was approached dorsally at the interosseous lunotriquetral and the scapholunate ligament areas with an arthroscopic shaver until brisk bleeding was achieved upon deflating the tourniquet. In some cases, the core of the lunate had to be penetrated with a 45 k-wire until bleeding was obtained. Of the 22 wrists treated arthroscopically with lunate decompression, 18 had both pre-surgical and post-surgical follow-up evaluations. Results. The patients who underwent lunate arthroscopic decompression surgery demonstrated a statistically significant improvement in DASH score at 7 and 12 months postoperatively (p<0.05). The preoperative DASH score average for this cohort was 51, while post-operative DASH scores averaged 23 and 17 at 7 and 12 months, respectively. The patients also demonstrated some overall improvement in pain, functionality, range of motion, and grip strength as demonstrated by the Modified Mayo wrist score. Notably, the patients demonstrated statistically significant improvement in grip strength post-operatively at 7-months (p<0.05) and 12-months (p<0.01). In addition, there was noted to be improvement in supination and ulnar deviation measurements post-operatively at 7 months and 12 months, respectively. Conclusion. This study demonstrates the clinical outcome of arthroscopic decompression of the lunate in patients suffering from Kienböck's Disease using the patient's subjective evaluations as well as range of motion and grip strength measurements. Arthroscopic decompression of the lunate decreases clinical symptoms and slows progression of Kienböck's Disease using a less invasive surgical intervention


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 906 - 911
1 Aug 2004
Kearns SR Daly AF Sheehan K Murray P Kelly C Bouchier-Hayes D

Compartment syndrome is a unique form of ischaemia of skeletal muscle which occurs despite patency of the large vessels. Decompression allows the influx of activated leucocytes which cause further injury. Vitamin C is a powerful antioxidant which concentrates preferentially in leucocytes and attenuates reperfusion-induced muscle injury. We have evaluated the use of pretreatment with oral vitamin C in the prevention of injury caused by compartment syndrome in a rat cremasteric muscle model. Acute and delayed effects of pretreatment with vitamin C were assessed at one and 24 hours after decompression of compartment syndrome. Muscle function was assessed electrophysiologically. Vascular, cellular and tissue inflammation was assessed by staining of intercellular adhesion molecule-1 (ICAM-1) and by determination of the activity of myeloperoxidase (MPO) in neutrophils and tissue oedema. Compartment syndrome impaired skeletal muscle function and increased the expression of ICAM-1, activity of MPO and muscle weight increased significantly. Pretreatment with vitamin C preserved muscle function and reduced the expression of ICAM-1, infiltration of the neutrophils and oedema