Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 740 - 747
1 Jul 2003
Dragoo JL Samimi B Zhu M Hame SL Thomas BJ Lieberman JR Hedrick MH Benhaim P

Multipotential processed lipoaspirate (PLA) cells extracted from five human infrapatellar fat pads and embedded into fibrin glue nodules, were induced into the chondrogenic phenotype using chondrogenic media. The remaining cells were placed in osteogenic media and were transfected with an adenovirus carrying the cDNA for bone morphogenetic protein-2 (BMP-2). We evaluated the tissue-engineered cartilage and bone using in vitro techniques and by placing cells into the hind legs of five severe combined immunodeficient mice. After six weeks, radiological and histological analysis indicated that the PLA cells induced into the chondrogenic phenotype had the histological appearance of hyaline cartilage. Cells transfected with the BMP-2 gene media produced abundant bone, which was beginning to establish a marrow cavity. Tissue-engineered cartilage and bone from infrapatellar fat pads may prove to be useful for the treatment of osteochondral defects


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 122 - 122
1 Dec 2020
Huri PY Talak E Kaya B Huri G
Full Access

Articular cartilage is often damaged, and its treatment is usually performed by surgical operation. Today, tissue engineering offers an alternative treatment option for injuries or diseases with increasing importance. Infrapatellar fat pad (IPFP) is a densely vascularized and innervated extra synovial tissue that fills the anterior knee compartment. Adipose-derived stem cells from infrapatellar fat pad (IPFP-ASCs) have multipotency means that they can differentiate into connective tissue cells and have age-independent differentiation capacity as compared to other stem cells. In this study, the osteochondral tissue construct was designed with different inner pattern due to original osteochondral tissue structure and fabrication of it was carried out by 3D printing. For this purpose, alginate (3% w/v) and carboxymethylcellulose (CMC) (9%w /v) were used as bioink. Also, IPFP-ASCs were isolated with enzymatic degradation. Osteogenic and chondrogenic differentiation of IPFP-ASCs were investigated with Alizarin Red and Alcian Blue staining, respectively. IPFP-ASCs-laden osteochondral graft differentiation will be induced by controlled release of growth factor BMP-2 and TGF-β. Before this step, nanocapsules formation with double emission technique with model protein BSA was carried out with different concentration of PCL (5%,10% and 20%). The morphology and structure of the nanocapsules were determined with scanning electron microscopy (SEM). Also, we successfully designed and printed alginate and CMC based scaffold with 20 layers. Chondrogenic and osteogenic differentiation of IPFP-ASCs with suitable culture conditions was obtained. The isolation of IPFP-ASCs, formation of the nanocapsules, and 3D printing of osteochondral graft were carried out successfully


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 50 - 50
1 Aug 2012
Hopper N Wardale J Rushton N
Full Access

Introduction. Mesenchymal stem cells (MSC) are an attractive cell population for regeneration of mesenchymal tissue such as bone and cartilage. Various studies have demonstrated the repair capacity of MSCs and even their usefulness in treating critical size defects. Much of the work conducted on adult stem cells has focused on MSCs found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. The aim of the present study is to evaluate the differentiation capability of adipose-tissue derived stem cells (ASC) extracted from the infrapatellar fat pad. Materials and Methods. Human infrapatellar fat pad tissue was obtained from patients undergoing total joint replacement for osteoarthritis with full ethical consent. A multipotent progenitor cell population was derived after collagenase digestion from the adipose tissue. The ASCs were induced to differentiate towards adipogenic, chondrogenic, and osteogenic lineages for 21 days both in normoxic and hypoxic cell culture conditions. The differentiation and multilineage potential was assessed according to cell morphology and in vitro detection of tissue-specific differentiation molecules. Results. After 3 weeks in culture the staining for oil-red-o, alcian bue, and alizarin-red confirmed the differentiation capability of ASC's to adipogenic, chondrogenic, and osteogenic lineages, respectively. The hypoxic cell culture condition was found to support the ASCs' chondrogenic differentiation capability and subsequently enhanced the proteoglycan release from the cells. Fluorescence-activated cell sorting (FACS) confirmed the presence of stromal precursor cell marker STRO-1 in the ASC population. Discussion. Subcutaneous adipose tissue is particularly attractive reservoir for progenitor cells because it is easily accessible, rather abundant, and self-replenishing. The results of this study demonstrate that ASCs can be derived from infrapatellar fat pad and that they have potential for musculoskeletal tissue repair and regeneration. Further studies are underway to evaluate how to adopt a biomaterial to deliver these cells into the defect area to facilitate the healing response


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 30 - 30
1 Dec 2020
Haartmans M Eveque-Mourroux M Eijkel G Emanuel K Tuijthof G van Rhijn L Heeren R Emans P Cillero-Pastor B
Full Access

The incidence of osteoarthritis (OA) is increasing in our younger population. OA development early in life is often related to cartilage damage, caused by (sport) injury or trauma. Detection of early knee OA is therefore crucial to target early treatment. However, early markers for OA prognosis or diagnosis are lacking. Hoffa's fat pad (HFP) is an emerging source for knee biomarkers, as it is easily accessible and shows important interaction with the homeostasis of the knee. In this study, we used Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) as a first approach. MALDI-MSI allows the study of tissue-specific molecular distributions. Therefore, we used MALDI-MSI to analyze the lipid profiles in the HFP of three patients with OA and three patients undergoing cartilage regenerative treatment. We demonstrate that the lipid profile of patients with OA is different from patients with cartilage defects.

HFP of each patient were snap frozen directly after surgical resection and cryosectioned at 15 μm. Each slide was sublimed with Norharmane matrix and analyzed by MALDI-MSI in positive and negative ion modes at a lateral resolution of 50 μm on a RapifleX Tissue Typer. The difference between patient groups were analyzed using principle component analysis and linear discriminant analysis. Lipid identifications were obtained on an Orbitrap Elite™ Hybrid Ion Trap-Orbitrap Mass Spectrometer in data dependent acquisition mode and analyzed using Lipostar software.

Linear discriminant analysis showed a specific lipid profile for each group (variance 33.94%). Score projections revealed a differential lipid spatial distribution of OA patients compared to cartilage defect patients. Among the lipids that differed significantly, for instance, the m/z 760.59 [M+H]+ was associated to osteoarthritis and identified as glycerophospholipid (PC 34:1), a main component of biological membranes. Additionally, the samples were found to be intra-tissue heterogeneous, with molecular profiles found in adipose-, connective- and synovial tissue.

These results suggest that lipid profiles in HFP could be useful for early OA detection. However, intra-tissue heterogeneity in HFP should be recognized when using HFP as a biomarker source.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 30 - 30
1 Dec 2021
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract. Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory based experiments to assess these properties. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the infrapatellar fat pad using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. Chronological age-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age on cellular senescence and identify pathways that could be targeted to potentially reverse any age-related changes


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 14 - 14
1 Dec 2021
Darlington I Vogt A Williams EC Brooks R Birch M Mohorianu I Khan W McCaskie A
Full Access

Abstract. Focal articular cartilage defects do not heal and, left untreated, progress to more widespread degenerative changes. A promising new approach for the repair of articular cartilage defects is the application of cell-based regenerative therapies using mesenchymal stromal cells (MSCs). MSCs are however present in a number of tissues and studies suggest that they vary in their proliferation, cell surface characterisation and differentiation. As the phenotypic properties of MSCs vary depending on tissue source, a systematic comparison of the transcriptomic signature would allow a better understanding of these differences between tissues, and allow the identification of markers specific to a MSC source that is best suited for clinical application. Tissue was used from patients undergoing total knee replacement surgery for osteoarthritis following ethical approval and informed consent. MSCs were isolated from bone, cartilage, synovium and infrapatellar fat pad. MSC number and expansion were quantified. Following expansion in culture, MSCs were characterised using flow cytometry with several cell surface markers; the cells from all sources were positive for CD44, CD90 and CD105. Their differentiation potential was assessed through tri-lineage differentiation assays. In addition, bulk mRNA-sequencing was used to determine the transcriptomic signatures. Differentially expressed (DE) genes were predicted. An enrichment analysis focused on the DE genes, against GO and pathway databases (KEGG and Reactome) was performed; protein-protein interaction networks were also inferred (Metascape, Reactome, Cytoscape). Optimal sourcing of MSCs will amplify their cartilage regeneration potential. This is imperative for assessing future therapeutic transplantation to maximise the chance of successful cartilage repair. A better understanding of differences in MSCs from various sources has implications beyond cartilage repair


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 68 - 68
1 May 2012
Khan W Dheerendra S Johnson D Andrew J Hardingham T
Full Access

Introduction. Mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. We have previously demonstrated that the infrapatellar synovial fat pad is a rich source of mesenchymal stem cells and these cells are able to undergo chondrogenic differentiation. Although synovial fat pad derived mesenchymal stem cells may represent a heterogenous population, clonal populations derived from the synovial fat pad have not previously been studied. Materials and Methods. Mesenchymal stem cells were isolated from the infrapatellar synovial fat pad of a patient undergoing total knee arthroplasty and expanded in culture. Six clonal populations were also isolated before initial plating using limiting dilution and expanded. The cells from the mixed parent population and the derived clonal populations were characterised for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium for 14 days. Gene expression analyses; glycosoaminoglycan and DNA assays; and immunohistochemical staining were determined to assess chondrogenic responses. Results. Cells from the mixed parent population and the derived clonal populations stained strongly for markers of adult mesenchymal stem cells including CD44, CD90 and CD105, and they were negative for the haematopoietic marker CD34 and for the neural and myogenic marker CD56. Interestingly, a variable number of cells were also positive for the pericyte marker 3G5 both in the mixed parent and clonal populations. The clonal populations exhibited a variable chondrogenic response; one clonal cell population exhibited a significantly greater chondrogenic response when compared with the mixed parent population. Discussion. Pericytes are a candidate stem cell in many tissue and our results show that all six clonal populations derived from the heterogenous synovial fat pad population express the pericyte marker 3G5. The variable chondrogenic responses suggest inherent differences between these populations. The chondrogenic potential of the synovial fat pad could be optimised by the identification of clonal populations with a propensity to differentiate down particular differentiation pathways, and this has implications on the future tissue engineering applications of these cells for cartilage repair


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 64 - 64
1 Jul 2014
Lopa S Colombini A Stanco D de Girolamo L Sansone V Moretti M
Full Access

Summary. The donor-matched comparison between mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue revealed their preferential commitment towards the chondrogenic and osteogenic lineage, respectively. These peculiarities could be relevant for the development of successful bone and cartilage cell-based applications. Introduction. Mesenchymal stem cells (MSCs) have been proposed in bone and cartilage tissue engineering applications as an alternative to terminally differentiated cells. In the present study we characterised and performed a donor-matched comparison between MSCs resident within the infrapatellar fat pad (IFP-MSCs) and the knee subcutaneous adipose tissue (ASCs) of osteoarthritic patients. These two fat depots, indeed, can be considered appealing candidates for orthopaedic cell-based therapies since they are highly accessible during knee surgery. Materials and Methods. IFP-MSCs and ASCs were obtained from 25 osteoarthritic patients undergoing total knee replacement. Undifferentiated cells were compared for their clonogenic ability and surface markers expression. Adipogenic, osteogenic and chondrogenic differentiative potentials were evaluated after IFP-MSCs and ASCs induction towards the various lineages by means of histological, biochemical and gene expression analysis of characteristic markers. Results. We found that undifferentiated IFP-MSCs and ASCs displayed a high clonogenic ability and the typical immunophenotype of MSCs (CD13. +. /CD29. +. /CD44. +. /CD73. +. /CD90. +. /CD105. +. /CD166. +. /CD31. −. /CD45. −. ), without any difference in terms of surface markers expression between these two cell populations. When both cell types were cultured in adequate adipo-, osteo- and chondro- differentiative media, IFP-MSCs and ASCs showed similar adipogenic potential, though undifferentiated ASCs had superior LEP expression compared to undifferentiated IFP-MSCs (p<0.01). ASCs showed a higher response to osteogenic induction in comparison with IFP-MSCs as demonstrated by significantly higher levels of calcified matrix deposition (p<0.05) and alkaline phosphatase activity (p<0.05). After 14 days of chondrogenic induction of cells cultured in pellets, we observed greater amounts of glycosaminoglycans (p<0.01) in IFP-MSCs pellets compared to ASCs pellets. Chondrogenic differentiation of IFP-MSCs showed also a superior gene expression of ACAN (p<0.001), SOX9, COMP (p<0.001) and COL2A1 (p<0.05) compared to ASCs. Furthermore, IFP-MSCs showed significantly lower levels of COL10A1 (p<0.05) and COL1A1 (p<0.01) and lower alkaline phosphatase release (p<0.05) compared to ASCs, supporting the hypothesis of a superior chondrogenic commitment of IFP-MSCs. Discussion/Conclusion. The observed dissimilarities between IFP-MSCs and ASCs suggest that despite similar features at the undifferentiated state, MSCs deriving from different anatomical sites within the same joint can display a specific commitment. The peculiar commitment of IFP-MSCs and ASCs towards the chondrogenic and osteogenic lineage suggests that they may be preferentially used for cartilage and bone applications, respectively


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1261 - 1267
1 Sep 2007
Tohyama H Yasuda K Uchida H Nishihira J

In order to clarify the role of cytokines in the remodelling of the grafted tendon for ligament reconstruction we compared the responses to interleukin (IL)-1β, platelet-derived growth factor (PDGF)-BB and transforming growth factor (TGF)-β1 of extrinsic fibroblasts infiltrating the frozen-thawed patellar tendon in rats with that of the normal tendon fibroblasts, in regard to the gene expression of matrix metalloproteinase (MMP)-13, using Northern blot analysis. We also examined, immunohistologically, the local expression of IL-1β, PDGF-BB, and TGF-β1 in fibroblasts infiltrating the frozen-thawed patellar tendon.

Northern blot analysis showed that fibroblasts derived from the patellar tendon six weeks after the freeze-thaw procedure in situ showed less response to IL-1β than normal tendon fibroblasts with respect to MMP-13 mRNA gene expression. The immunohistological findings revealed that IL-1β was over-expressed in extrinsic fibroblasts which infiltrated the patellar tendon two and six weeks after the freeze-thaw procedure in situ, but neither PDGF-BB nor TGF-β1 was over-expressed in these extrinsic fibroblasts. Our findings indicated that IL-1β had a close relationship to matrix remodelling of the grafted tendon for ligament reconstruction, in addition to the commencement of inflammation during the tissue-healing process.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 129 - 133
1 Jan 2006
Lee SY Miwa M Sakai Y Kuroda R Niikura T Kurosaka M

We have investigated whether cells derived from haemarthrosis caused by injury to the anterior cruciate ligament could differentiate into the osteoblast lineage in vitro. Haemarthroses associated with anterior cruciate ligament injuries were aspirated and cultured. After treatment with β-glycerophosphate, ascorbic acid and dexamethasone or 1,25 (OH)2D3, a significant increase in the activity of alkaline phosphatase was observed. Matrix mineralisation was demonstrated after 28 days and mRNA levels in osteoblast-related genes were enhanced.

Our results suggest that the haemarthrosis induced by injury to the anterior cruciate ligament contains osteoprogenitor cells and is a potential alternative source for cell-based treatment in such injury.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 12 | Pages 1689 - 1693
1 Dec 2005
Ikema Y Tohyama H Nakamura H Kanaya F Yasuda K

We compared the biological characteristics of extrinsic fibroblasts infiltrating the patellar tendon with those of normal, intrinsic fibroblasts in the normal tendon in vitro. Infiltrative fibroblasts were isolated from the patellar tendons of rabbits six weeks after an in situ freeze-thaw treatment which killed the intrinsic fibroblasts. These intrinsic cells were also isolated from the patellar tendons of rabbits which had not been so treated.

Proliferation and invasive migration into the patellar tendon was significantly slower for infiltrative fibroblasts than for normal tendon fibroblasts. Flow-cytometric analysis indicated that expression of α5β1 integrin at the cell surface was significantly lower in infiltrative fibroblasts than in normal tendon fibroblasts. The findings suggest that cellular proliferation and invasive migration of fibroblasts into the patellar tendon after necrosis are inferior to those of the normal fibroblasts. The inferior intrinsic properties of infiltrative fibroblasts may contribute to a slow remodelling process in the grafted tendon after ligament reconstruction.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1392 - 1400
1 Oct 2008
Hayashi R Kondo E Tohyama H Saito T Yasuda K

We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks.

The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022).

The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament.