Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

ADIPOSE-TISSUE DERIVED STEM CELLS IN MUSCULOSKELETAL REPAIR AND REGENERATION

British Orthopaedic Research Society (BORS)



Abstract

Introduction

Mesenchymal stem cells (MSC) are an attractive cell population for regeneration of mesenchymal tissue such as bone and cartilage. Various studies have demonstrated the repair capacity of MSCs and even their usefulness in treating critical size defects. Much of the work conducted on adult stem cells has focused on MSCs found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. The aim of the present study is to evaluate the differentiation capability of adipose-tissue derived stem cells (ASC) extracted from the infrapatellar fat pad.

Materials and Methods

Human infrapatellar fat pad tissue was obtained from patients undergoing total joint replacement for osteoarthritis with full ethical consent. A multipotent progenitor cell population was derived after collagenase digestion from the adipose tissue. The ASCs were induced to differentiate towards adipogenic, chondrogenic, and osteogenic lineages for 21 days both in normoxic and hypoxic cell culture conditions. The differentiation and multilineage potential was assessed according to cell morphology and in vitro detection of tissue-specific differentiation molecules.

Results

After 3 weeks in culture the staining for oil-red-o, alcian bue, and alizarin-red confirmed the differentiation capability of ASC's to adipogenic, chondrogenic, and osteogenic lineages, respectively. The hypoxic cell culture condition was found to support the ASCs' chondrogenic differentiation capability and subsequently enhanced the proteoglycan release from the cells. Fluorescence-activated cell sorting (FACS) confirmed the presence of stromal precursor cell marker STRO-1 in the ASC population.

Discussion

Subcutaneous adipose tissue is particularly attractive reservoir for progenitor cells because it is easily accessible, rather abundant, and self-replenishing. The results of this study demonstrate that ASCs can be derived from infrapatellar fat pad and that they have potential for musculoskeletal tissue repair and regeneration. Further studies are underway to evaluate how to adopt a biomaterial to deliver these cells into the defect area to facilitate the healing response.