Advertisement for orthosearch.org.uk
Results 1 - 20 of 117
Results per page:
Bone & Joint Research
Vol. 8, Issue 1 | Pages 3 - 10
1 Jan 2019
Hernandez P Sager B Fa A Liang T Lozano C Khazzam M

Objectives. The purpose of this study was to examine the bactericidal efficacy of hydrogen peroxide (H. 2. O. 2. ) on Cutibacterium acnes (C. acnes). We hypothesize that H. 2. O. 2. reduces the bacterial burden of C. acnes. Methods. The effect of H. 2. O. 2. was assessed by testing bactericidal effect, time course analysis, growth inhibition, and minimum bactericidal concentration. To assess the bactericidal effect, bacteria were treated for 30 minutes with 0%, 1%, 3%, 4%, 6%, 8%, or 10% H. 2. O. 2. in saline or water and compared with 3% topical H. 2. O. 2. solution. For time course analysis, bacteria were treated with water or saline (controls), 3% H. 2. O. 2. in water, 3% H. 2. O. 2. in saline, or 3% topical solution for 5, 10, 15, 20, and 30 minutes. Results were analyzed with a two-way analysis of variance (ANOVA) (p < 0.05). Results. Minimum inhibitory concentration of H. 2. O. 2. after 30 minutes is 1% for H. 2. O. 2. prepared in saline and water. The 3% topical solution was as effective when compared with the 1% H. 2. O. 2. prepared in saline or water. The controls of both saline and water showed no reduction of bacteria. After five minutes of exposure, all mixtures of H. 2. O. 2. reduced the percentage of live bacteria, with the topical solution being most effective (p < 0.0001). Maximum growth inhibition was achieved with topical 3% H. 2. O. 2. . Conclusion. The inexpensive and commercially available topical solution of 3% H. 2. O. 2. demonstrated superior bactericidal effect as observed in the minimum bactericidal inhibitory concentration, time course, and colony-forming unit (CFU) inhibition assays. These results support the use of topical 3% H. 2. O. 2. for five minutes before surgical skin preparation prior to shoulder surgery to achieve eradication of C. acnes for the skin. Cite this article: P. Hernandez, B. Sager, A. Fa, T. Liang, C. Lozano, M. Khazzam. Bactericidal efficacy of hydrogen peroxide on Cutibacterium acnes. Bone Joint Res 2019;8:3–10. DOI: 10.1302/2046-3758.81.BJR-2018-0145.R1


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 97 - 98
1 Feb 2023
Farhan-Alanie OM Kennedy JW Meek RMD Haddad FS


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 262 - 262
1 Sep 2005
Harty JA Butt K Bryan K Mullan GB
Full Access

Polymethylmethacrylate (PMMA) Acrylic Bone Cement is a polymer used to anchor the prosthesis during Joint Replacement Surgery. Arthroplasty with Bone Cement is associated with late loosening, compromising prosthetic stability leading to Revision arthroplasty. Different irrigating solutions such as Hydrogen Peroxide or Saline are used during arthroplasty. The aim of the study was to analyse the effects of Hydrogen Peroxide on the mechanical properties of Bone Cement. Materials and Methods: Cement was mixed as per standard methods used in theatre, in a vacuum and at a temp of 18 degrees centigrade. Once the cement was mixed it was then placed in conical moulds and the exposed surface was either exposed to saline or Hydrogen Peroxide solution (6% from a standard theatre preparation). We studied the effect of Hydrogen Peroxide on Dough time, Curing time, Surface Analysis and Hardness of PMMA. Dough time was performed with latex examination gloves. Curing time was measured at 15 seconds intervals using a Vickers hardness transistor. Cement hardness was assessed using the same machine. Surface analysis was performed by preparing the samples using a grit rotaforce machine. Palacos Bone Cement was used and tests were conducted according to ASTM F-451 and ISO 5833 standards. Results: The samples exposed to hydrogen peroxide showed an increase in the dough time in comparison to the controls from 3.5 minutes to 5 minutes. Curing time showed a difference of 13.5 minutes for the controls as opposed to 17 minutes for the HP contaminated samples. Surface hardness reduced from a mean of 17.5hv to 14.3hv after exposure to hydrogen peroxide (p< 0.05). There was increased staining of the Hydrogen Peroxide sample, with surface irregularities, and an associated increase in surface porosity. Surface porosity increased from 120um (SD 11.2) to 180um (SD 8.7) (p< 0.05). Conclusion: We have shown that the use of hydrogen peroxide contamination of bone cement interferes with the biomechanical properties of the cement, leading to an overall reduction in strength and hardness of the cement. This may lead to an associated reduction in the strength of the bone cement interface and precipitate early micro-motion and loosening of the prosthesis


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 183 - 183
1 Mar 2010
Ackland D Yap V Hardige A Ackland M Williams J de Steiger R
Full Access

There are several different ways of preparing the femoral canal prior to cementing a hip prosthesis. This study investigated the mechanical strength of the cement-bone interface of four different types of preparation determined by the maximum tensile force required to separate a cemented prosthesis from its cancellous bone origin.

Forty-eight fresh-frozen ox femora were prepared for hip arthroplasty, In a four-way comparison, groups of eleven femora were prepared by irrigation using

syringe injected normal saline;

hydrogen-peroxide soaked gauze;

pulse-lavage brushing; and

pulse-lavage brushing and hydrogen-peroxide soaked gauze combination.

Specimens were secured to a Material-test System (MTS), and the femoral implant pulled from the femur uni-axially at a rate of 5mm/min. The ‘pull-out strength’ was defined as the maximum tension recorded by the MTS during separation. Cement interdigitation was also inspected for each technique by microscopy of eight bone-implant transverse sections taken from prepared specimens.

Following an analysis of variance and pair-wise Fisher comparison, the average pull-out strength of the cemented prosthesis was significantly higher (P< 0.001) using pulse-lavage brushing (mean 8049.2 N), and pulse-lavage brushing in combination with hydrogen-peroxide soaked gauze (mean 8489.1 N), than with normal saline irrigation (mean 947.1 N) or hydrogen-peroxide soaked gauze preparation (mean 1832.6 N). Prosthesis pull-out strength following pulse-lavage brushing in combination with hydrogen-peroxide soaked gauze was not significantly different (P> 0.05) than preparing with pulse-lavage brushing alone. Low and high power microscopy of specimen transverse sections revealed the greatest levels of cement penetration in specimens prepared using pulse-lavage brushing.

This study demonstrated that one of the most effective preparations of the femoral canal for optimal mechanical fixation between cement and cancellous bone is pulse- lavage brushing. The use of hydrogen-peroxide soaked gauze in femoral canal preparation, either alone or in combination with pulse-lavage brushing, may not significantly improve prosthesis fixation.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims. This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. Methods. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Results. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1β in NPCs were upregulated, and the number of propidium iodide (PI)-positive cells was also increased, which was able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear factor erythroid 2–related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the transcription factor Nrf2 was up- or downregulated when the melatonin receptor was activated or blocked by melatonin or luzindole, respectively. Conclusion. Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors. Cite this article: Bone Joint Res 2023;12(3):202–211


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 559 - 567
1 May 2023
Aoude A Nikomarov D Perera JR Ibe IK Griffin AM Tsoi KM Ferguson PC Wunder JS

Aims. Giant cell tumour of bone (GCTB) is a locally aggressive lesion that is difficult to treat as salvaging the joint can be associated with a high rate of local recurrence (LR). We evaluated the risk factors for tumour relapse after treatment of a GCTB of the limbs. Methods. A total of 354 consecutive patients with a GCTB underwent joint salvage by curettage and reconstruction with bone graft and/or cement or en bloc resection. Patient, tumour, and treatment factors were analyzed for their impact on LR. Patients treated with denosumab were excluded. Results. There were 53 LRs (15%) at a mean 30.5 months (5 to 116). LR was higher after curettage (18.4%) than after resection (4.6%; p = 0.008). Neither pathological fracture (p = 0.240), Campanacci grade (p = 0.734), soft-tissue extension (p = 0.297), or tumour size (p = 0.872) affected the risk of recurrence. Joint salvage was possible in 74% of patients overall (262/354), and 98% after curettage alone (262/267). Of 49 patients with LR after curettage, 44 (90%) underwent repeated curettage and joint salvage. For patients treated by curettage, only age less than 30 years (p = 0.042) and location in the distal radius (p = 0.043) predicted higher LR. The rate of LR did not differ whether cement or bone graft was used (p = 0.753), but may have been reduced by the use of hydrogen peroxide (p = 0.069). Complications occurred in 15.3% of cases (54/354) and did not differ by treatment. Conclusion. Most patients with a GCTB can undergo successful joint salvage by aggressive curettage, even in the presence of a soft-tissue mass, pathological fracture, or a large lesion, with an 18.4% risk of local recurrence. However, 90% of local relapses after curettage can be treated by repeat joint salvage. Maximizing joint salvage is important to optimize long-term function since most patients with a GCTB are young adults. Younger patients and those with distal radius tumours treated with joint-sparing procedures have a higher rate of local relapse and may require more aggressive treatment and closer follow-up. Cite this article: Bone Joint J 2023;105-B(5):559–567


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 368 - 368
1 Oct 2006
Gouldson S Coathup M Blunn G Sood M
Full Access

Introduction: One of the most common complications following total joint surgery is aseptic loosening. Improving the bone-cement interlock may increase implant longevity. An ideally prepared bony surface is dry; clean; free from marrow, fat and debris; free from active bleeding; and free from micro-organisms. Lavage removes debris, blood and fat from the interstices of the bone surface so as to allow optimal penetration of the cement. The hypothesis that we investigated in this study was that lavage with a detergent solution obtains a greater depth of cement penetration into bone compared with lavage using 0.9% saline, hydrogen peroxide or an alcohol solution. Methods: The cancellous bone of ovine femoral condyles were cut into 10×10×13mm blocks. Lavage solutions were delivered via a pulsatile system and directed towards one side of the bone block. All blocks were swabbed dry. A high viscosity cement was manually mixed and applied to the sandblasted surface of titanium alloy plate (10×10mm, weight 0.9g ±0.01g). The titanium plate and cement were placed on the irrigated bone block, and a known weight applied to achieve pressurisation. Time, temperature and method were controlled. The prosthesis-cement-bone composite was sectioned perpendicularly, and image analysis used to quantify penetration depths. 10 readings were recorded per block with 6 blocks per lavage group. Results: Cancellous bone porosity averaged 75.2% (±4.0) . The mean penetration depth in the saline group averaged 3.39mm (± 0.77); 3.04mm (± 0.59) using a 2% alcohol solution; 3.33mm (±0.79) using a 3% hydrogen peroxide solution; and 5.41mm (± 1.30) when using the detergent lavage. There was no significant difference in cement penetration depth between hydrogen peroxide and saline irrigation (p> 0.05), nor with hydrogen peroxide and alcohol irrigation (p> 0.05). Irrigation with saline however, afforded statistically superior cement penetration than that of alcohol lavage (p < 0.012). Irrigation with detergent solution demonstrated significantly greater depth of penetration than all three other lavage groups (saline p< 0.05; alcohol p< 0.05; hydrogen peroxide p< 0.05). Discussion: Detergents can physically remove particulate matter and emulsify and remove fats, thereby acting to maximise porosity of the cancellous bone network and optimise space for occupation by intruding cement. This study has proven the ability of a detergent solution to provide a clean, debris free cancellous network, which consequently provides a significantly greater depth of cement penetration than other commonly used irrigating agents. It was noted that cement penetration into cancellous bone followed the line and depth of cleaning from lavage. In conclusion, the hypothesis can be accepted, and lavage with a detergent solution affords a statistically greater depth of cement penetration into bone than that of the universally used 0.9% saline lavage


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 392 - 392
1 Jul 2008
Gardner L Varbiro G Williams G Trividi J Roberts S
Full Access

Cells of the intervertebral disc exist in an unusual environment compared to those of other tissues. Within the disc there are low levels of nutrients available, low oxygen levels and it is an acidic environment due to high lactate levels. Apoptosis (programmed or controlled cell death) has been reported in intervertebral discs, as well as necrosis (uncontrolled cell death). This study has focused on examining the sensitivity of nucleus pulpo-sus (NP) cells to several stimuli, in comparison to two other cells types. Ultra violet (UV) irradiation, serum starvation (with no foetal calf serum) and treatment with 2mM hydrogen peroxide were used to induce apoptosis in cultured bovine NP cells, HeLa (cancer cell line) and 293T cells (human embryo kidney derived) cells. Apoptosis was identified by nuclear morphology following staining with fluorescent Hoechst 33342 dye and propidium iodide; the incidence was measured at 24, 48 and 72 hours. Untreated controls were used for each treatment and at each time point. The incidence of apoptosis increased with time for all treatments. After 72 hours, UV treatment produced the highest levels of apoptosis with levels of apoptosis occurring in the order of HeLa (94%) > NP cells (29%) > 293T cells (15%). Treatment with hydrogen peroxide and serum starvation induced apoptosis at lower levels in all three cell types (maximum of 30%). Serum starvation induced apoptosis in only 10% of NP cells at 72 hours, compared to 20% in HeLa cells. None of the controls contained apoptotic cells. NP cells are stimulated to apoptose in response to UV irradiation, hydrogen peroxide and serum starvation. However, levels of apoptosis are much lower after UV treatment in comparison to HeLa cells (3 times lower), suggesting that they may have a protective mechanism to this apoptotic stimulus, compared to HeLa cells. The low levels of apoptosis observed in NP cells with serum starvation may be due to the low nutrient environment that they exist in normally


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 448 - 448
1 Oct 2006
Wei A Chung S Brisby H Diwan A
Full Access

Introduction Bone morphogenetic protein-7 (BMP-7) is known to stimulate both cellular proliferation and extracellular matrix synthesis in the intervertebral disc but its protective role in apoptosis is unknown. The aim of this study was to determine whether BMP-7 protect cultured intervertebral disc cells following stimulation of apoptosis. Methods Nucleus pulposus tissues were obtained from consent individuals under surgical procedures and digested with collagenase prior to culturing. Cellular apoptosis was achieved by either tumor necrosis factor-alpha (TNF-β) or hydrogen peroxide (H2O2) incubation. BMP-7 (Stryker) was used at 100ng/ml, 5 hours prior to the addition of apoptotic stimulation. Cellular apoptosis was detected by TUNEL assay, caspase-3 activity and caspase-3 protein expression. Cellular proliferation and viability was assayed by H3-thymidine incorporation and MTS assay respectively. Collagen II and aggrecan protein levels were measured using western blots and immunostaining. Proteoglycan synthesis was determined by (35)S-sulfate incorporation method. Nitric oxide and alkaline phosphatase activity were measured. Results Both extrinsic and intrinsic apoptotic pathways were induced by TNF-β or hydrogen peroxide with increased proteolytic activity of caspase-3 as well as cellular shrinkage and nuclear condensation. Addition of BMP-7 prior to stimulation of apoptosis resulted in complete block of the apoptotic effects of both inducers as well as the cellular nitric oxide induced by TNF-β and BMP-7 increases cellular viability, proliferation and extracellular matrix production in an apoptotic environment with no osteoblastic activity induction of discal cells. Discussion BMP-7 prevents apoptosis of cultured human disc cells induced by either tumor necrosis factor-alpha (TNF-β) or hydrogen peroxide. Induction of apoptosis led to down regulation of extracellular matrix proteins, decreased cell viability, morphological changes and activation of caspase-3, however addition of BMP-7 alone prevented the effects observed. One possible mechanism of the anti-apoptotic effects of BMP-7 was shown by its retardation of the elevated levels of TNF-β induced nitric oxide


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 3 | Pages 444 - 446
1 May 1990
Bannister G Young S Baker A Mackinnon J Magnusson P

Bleeding from cancellous bone causes lamination within bone cement and at its prosthetic interfaces, and weakens the fixation of joint replacements. We examined the effects of anaesthesia and blood pressure on bleeding in human cancellous bone, and investigated the local response to freezing saline, 1:200,000 adrenaline and hydrogen peroxide. Spinal anaesthesia reduced cancellous bleeding by an average of 44%, local freezing saline by 24%. Saline at room temperature, adrenaline solution and hydrogen peroxide each reduced it by 14%. The effects of spinal anaesthesia and of freezing saline were additive: used together they reduced bleeding by 56%. The reduction of blood contamination of cement and its interfaces should contribute to better prosthetic fixation


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 5 | Pages 724 - 730
1 Sep 1993
Taylor G Leeming J Bannister G

We modelled a 'clean' surgical wound lightly contaminated with airborne bacteria, using agar, ovine muscle and ovine adipose tissue. This was used to assess the effect on bacteria of ultraviolet C light (UVC) 1200 mu W/cm2, hydrogen peroxide 3%, povidone-iodine 1% and 10%, chlorhexidine 0.05%, pulsed jet lavage with UVC and syringe and needle lavage with chlorhexidine 0.05%. All the agents were effective on agar, but mixing with blood or plasma neutralised hydrogen peroxide and povidone-iodine 1%. All the agents were less effective on tissue specimens than on agar, but were more effective on adipose tissue than on muscle. All the antiseptics except chlorhexidine were less effective when blood or plasma was added to muscle specimens before disinfection. UVC after pulsed jet lavage had an additive effect. Syringe and needle lavage with chlorhexidine 0.05% was the most effective method tested; it reduced colony counts by 99.8% and warrants clinical investigation


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 393 - 393
1 Jul 2008
Hughes S Hendricks B Bastawrous S Edwards D Middleton J
Full Access

Leucocytes are white blood cells that help the body fight against bacteria, viruses and tumour cells. However, the activity of leucocytes has been implicated in other clinically important inflammatory conditions such as ischaemic heart disease, stroke, and during cardio-aortic and orthopaedic surgery. The main objectives of this study was to optimise methods for the isolation of leucocyte subpopulations (neutrophils and monocytes), and to assess in vitro the effects of PMA and fMLP on markers of leucocyte adhesion (CD11b, CD62L) and activation (intracellular hydrogen peroxide) (n=10). Leucocyte subpopulations were labelled by incubation with fluorescein isothiocya-nate (FITC) conjugated anti-human CD11b and CD62L antibodies. The cell surface expression of these labelled adhesion molecules were measured by flow cytometry. Intracellular production of hydrogen peroxide by neutrophils and monocytes was measured by flow cytometry, using the fluorochrome dichloroflurorescin diacetate (DCFH-DA). These were visualised by Immunofluorescence microscopy. During this study, methods of isolating leucocyte subpopulations from whole blood were optimised. This ensured that these cells were isolated with consistently high yields, purity and with no changes in cellular function. Following incubation with PMA and fMLP, neutrophils and monocytes displayed an increase in CD11b cell surface expression; a decrease in CD62L cell surface expression; and increased leucocyte activation. Leucocyte activation was represented by the intracellular production of hydrogen peroxide. In conclusion this study confirms that both PMA and fMLP have an intrinsic effect on markers of leucocyte function. These findings are in agreement with previous studies performed


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 22 - 22
24 Nov 2023
Jo S Chao C Khilnani T Bostrom M Carli A
Full Access

Aim. Polypropylene (PPE) synthetic mesh is increasingly used in knee arthroplasty surgery to salvage a disrupted extensor mechanism. Despite its clinical success, it is associated with a high rate of periprosthetic joint infection (PJI), which is hypothesized to be caused by bacterial biofilm. The purpose of the current study is to describe the progression of PPE-based biofilm formation over time and to determine if intraoperative antiseptic solutions could be used to effectively remove biofilm when treating PJI. Method. Commercially available knotted monofilament PPE mesh. 1. was cut into 10mm circular shape, immersed in tryptic soy broth (TSB) with methicillin-sensitive staphylococcus aureus and cultured individually in 48-well plates for 10 days to elucidate the biofilm grown on mesh over time. At every 24 hours, a triplicate of samples was retrieved and biofilm on the mesh was dislodged by sonicating at 52 kHz for 15 minutes and quantified by counting colony-forming units (CFUs) after overnight growth. The biofilm growth was also verified using scanning electron microscopy. The effect of saline and antiseptic solutions was verified by exposing 1) 0.05% chlorohexidine gluconate. 2. , 2) acetic acid-based mixture. 3. , 3) diluted povidone-iodine (0.35%), 4) undiluted povidone-iodine (10%). 4. , and 5) 1:1 combination of 10% povidone-iodine & 3% hydrogen peroxide on immature and mature biofilms for 3 minutes, created by culturing with bacteria for 24 hours and 72 hours respectively. All experiments were performed in quintuples and repeated. Antiseptic treatments that produced a three-log reduction in CFU counts compared to controls were considered clinically significant. Results. PPE-mesh produced reliable CFU counts at 24 hours and reached peak growth at 72 hours. For immature biofilm, all formulations of povidone-iodine produced significant reductions in CFU counts compared to controls. Although not meeting the established threshold, saline irrigation removed 86.5% of CFUs, while formulation based on chlorohexidine and acetic acid removed 99.2% and 99.7% respectively. For mature biofilm, formulations based on povidone-iodine and acetic acid produced significant reductions in CFU counts. Conclusions. Our findings suggest biofilm may form on mesh as early as 24 hours after bacterial exposure. Povidone-iodine formulations were consistently the most effective in removing biofilm on mesh surfaces. We recommend that surgeons consider using an antiseptic solution, preferably povidone-iodine-based, in addition to regular saline lavage when attempting to salvage a PPE mesh in the setting of PJI. 1. Marlex mesh (CR Bard, Davol Inc, Warwick, RI), . 2. Irrisept (Irrimax Corp, Gainesville, FL), . 3. Bactisure (Zimmer-Biomet, Warsaw, IN), . 4. Aplicare (Inc, Meriden, CT)


Bone & Joint Research
Vol. 7, Issue 1 | Pages 58 - 68
1 Jan 2018
Portal-Núñez S Ardura JA Lozano D Martínez de Toda I De la Fuente M Herrero-Beaumont G Largo R Esbrit P

Objectives. Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. Methods. We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. Results. We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following hydrogen peroxide (H. 2. O. 2. )-induced oxidation, which was related to decreased lipid oxidative damage and caspase-3 activation in these cells. This was associated with their ability to restore the deleterious effects of H. 2. O. 2. on cell growth and alkaline phosphatase activity, as well as on the expression of various osteoblast differentiation genes. The addition of Rp-cyclic 3′,5′-hydrogen phosphorothioate adenosine triethylammonium salt (a cyclic 3',5'-adenosine monophosphate antagonist) and calphostin C (a protein kinase C inhibitor), or a PTH type 1 receptor antagonist, abrogated the effects of N-terminal PTHrP, whereas protein phosphatase 1 (an Src kinase activity inhibitor), SU1498 (a vascular endothelial growth factor receptor 2 inhibitor), or an anti osteostatin antiserum, inhibited the effects of C-terminal PTHrP. Conclusion. These findings indicate that the antioxidant properties of PTHrP act through its N- and C-terminal domains and provide novel insights into the osteogenic action of PTHrP. Cite this article: S. Portal-Núñez, J. A. Ardura, D. Lozano, I. Martínez de Toda, M. De la Fuente, G. Herrero-Beaumont, R. Largo, P. Esbrit. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res 2018;7:58–68. DOI: 10.1302/2046-3758.71.BJR-2016-0242.R2


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 86 - 86
1 Jul 2014
Spriano S Ferraris S Miola M
Full Access

Summary Statement. The problem facing this research is to promote rapid osteointegration of titanium implants and to minimise the risks of infections by the functionalization with different agents, each designed for a specific action. A patented process gives a multifunctional titanium surface. Introduction. A patented process of surface modification is described. It gives a multifunctional surface with a multiscale roughness (micro and nano topography), that is excellent for osteoblast adhesion and differentiation. It has a high degree of hydroxylation, that is relevant for inorganic bioactivity (apatite-HA precipitation) and it is ready for a functionalization with biological factors. A direct grafting of ALP has been obtained. Moreover, the growth of an antibacterial agent within the surface oxide layer can be useful in order to combine the osteoinduction ability to antimicrobial effects. The selection of an inorganic agent (metal nanoparticles) has the advantage to avoid an eventual development of antibiotic resistance by bacteria. Experimental Methods. Ti-cp and Ti6Al4V samples were polished or blasted, etched in diluted hydrofluoric acid (step 1a), oxidised in hydrogen peroxide (step 1b), incubated in Tresyl chloride (step 2a) and Alkaline phosphatase (ALP) enzyme (step 2b) [1, 2]. A water solution, containing a salt of the metal to be added to the surface as an inorganic antibacterial agent, can be introduced during the oxidation in hydrogen peroxide. Surface morphology and chemical composition were investigated by Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy Dispersive Spectroscopy (EDS). The composition of the outermost surface layer and the chemical state of elements were analyzed by X-Ray Photoelectron Spectroscopy (XPS). The activity of grafted enzyme was studied by an enzymatic activity test. In vitro bioactivity was evaluated by soaking the samples in simulated body fluid and SEM observation to verify hydroxyapatite (HA) precipitation. Antibacterial activity has been determined by inhibition halo test against S aureus. Results and Discussion. A peculiar multi-scale topography, with spongy-like nanometric features, was obtained after the inorganic treatment (step 1a-1b). This morphology can be superimposed on the micro-or macro roughness deriving from acid etching or blasting, by properly optimizing the process parameters. Moreover, the treated surfaces present a high density of hydroxyl groups (XPS data) and they are bioactive (HA precipitation after soaking in SBF for 15 days). Metal (Ag, Cu, Zn) nanoparticles can be grown within the surface oxide layer and they are effective as antimicrobial inorganic agents. The amount of the metal nanoparticles can be tailored in order to have an antibacterial or a bacteriostatic surface. The effective grafting of ALP (step 2a-2b) has been shown by XPS because of the appearance of characteristic peaks in the carbon region. Moreover, it has been observed that ALP maintains its activity after grafting by an enzymatic activity test. ALP grafting improves HA precipitation kinetics. Conclusions. An innovative process was applied to titanium surfaces in order to obtain a better bone integration ability and antibacterial activity. A multi scale surface topography (micro and nano features) was successfully obtained together with an high hydroxylation degree. Modified surfaces are able to induce hydroxyapatite precipitation in vitro and to graft ALP, maintaining its activity and improving bioactivity. Metal nanoparticles embedded in the surface oxide layer have an antibacterial effect


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1475 - 1479
1 Oct 2010
Gortzak Y Kandel R Deheshi B Werier J Turcotte RE Ferguson PC Wunder JS

Various chemicals are commonly used as adjuvant treatment to surgery for giant-cell tumour (GCT) of bone. The comparative effect of these solutions on the cells of GCT is not known. In this study we evaluated the cytotoxic effect of sterile water, 95% ethanol, 5% phenol, 3% hydrogen peroxide (H. 2. O. 2. ) and 50% zinc chloride (ZnCI. 2. ) on GCT monolayer tumour cultures which were established from six patients. The DNA content, the metabolic activity and the viability of the cultured samples of tumour cells were assessed at various times up to 120 hours after their exposure to these solutions. Equal cytotoxicity to the GCT monolayer culture was observed for 95% ethanol, 5% phenol, 3% H. 2. O. 2. and 50% ZnCI. 2. The treated samples showed significant reductions in DNA content and metabolic activity 24 hours after treatment and this was sustained for up to 120 hours. The samples treated with sterile water showed an initial decline in DNA content and viability 24 hours after treatment, but the surviving cells were viable and had proliferated. No multinucleated cell formation was seen in these cultures. These results suggest that the use of chemical adjuvants other than water could help improve local control in the treatment of GCT of bone


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 74 - 74
1 May 2019
Sierra R
Full Access

The number of cemented femoral stems implanted in the United States continues to slowly decrease over time. Approximately 10% of all femoral components implanted today are cemented, and the majority are in patients undergoing hip arthroplasty for femoral neck fractures. The European experience is quite different. In the UK, cemented femoral stems account for approximately 50% of all implants, while in the Swedish registry, cemented stems still account for the majority of implanted femoral components. Recent data demonstrating some limitations of uncemented fixation in the elderly for primary THA, may suggest that a cemented femoral component may be an attractive alternative in such a group. Two general philosophies exist with regards to the cemented femoral stem: Taper slip and Composite Beam. There are flagship implants representing both philosophies and select designs have shown excellent results past 30 years. A good femoral component design and cementing technique, however, is crucial for long-term clinical success. The author's personal preference is that of a “taper slip” design. The cemented Exeter stem has shown excellent results past 30 years with rare cases of loosening. The characteristic behavior of such a stem is to allow slight subsidence of the stem within the cement mantle through the process of cement creep. One or two millimeters of subsidence in the long-term have been observed with no detrimental clinical consequences. There have been ample results in the literature showing the excellent results at mid- and long-term in all patient groups. The author's current indication for a cemented stem include the elderly with no clear and definitive cutoff for age, most likely in females, THA for femoral neck fracture, small femoral canals such as those patients with DDH, and occasionally in patients with history of previous hip infection. Modern and impeccable cement technique is paramount for durable cemented fixation. It is important to remember that the goal is interdigitation of the cement with cancellous bone, so preparing the femur should not remove cancellous bone. Modern technique includes distal plugging of the femoral canal, pulsatile lavage, drying of the femoral canal with epinephrine or hydrogen peroxide, retrograde fill of the femoral canal with cement with appropriate suction and pressurization of the femoral cement into the canal prior to implantation of the femoral component. The dreaded “cement implantation syndrome” leading to sudden death can be avoided by appropriate fluid resuscitation prior to implanting the femoral component. This is an extremely rare occurrence today with reported mortality for the Exeter stem of 1 in 10,000. A cemented femoral component has been shown to be clinically successful at long term. Unfortunately, the art of cementing a femoral component has been lost and is rarely performed in the US. The number of cemented stems, unfortunately, may continue to go down as it is uncommonly taught in residency and fellowship, however, it might find a resurgence as the limits of uncemented fixation in the elderly are encountered. National joint registers support the use of cemented femoral components, and actually demonstrate higher survivorship at short term when compared to all other uncemented femoral components. A cemented femoral component should be in the hip surgeons armamentarium when treating patients undergoing primary and revision THA


The Journal of Bone & Joint Surgery British Volume
Vol. 43-B, Issue 1 | Pages 152 - 161
1 Feb 1961
Hancox NM Owen R Singleton A

1. Cancellous bone cubes from calf and man were deproteinised with hydrogen peroxide and with ethylenediamine. 2. Long bones were removed aseptically from sheep, stored in the bone bank and used for cancellous homografts. 3. Holes were drilled in the upper part of the tibia or ulna or in the lower part of the femur of sheep. Some were left empty; others were filled with plugs of the deproteinised heterogenous bone, with autografts, or with homografts. 4. Histological appearances were studied after seventeen and thirty-six days. 5. At seventeen days repair was more advanced in the plugged holes; the biological result was better with the ethylenediamine-treated than with the peroxide-treated material. After thirty-six days repair was at an advanced stage. As much new bone had been deposited on the trabeculae of the deproteinised heterografts as on those of the homografts. 6. There was no evidence of metaplastic bone formation; new bone seemed to form from endosteal osteoblasts. 7. Certain clinical implications are briefly discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 41-B, Issue 4 | Pages 836 - 847
1 Nov 1959
Hulth A Westerborn O

The present investigation has shown that crude papain can be used to produce rapid changes in the epiphysial cartilage of various young laboratory animals (rabbits, mice, rats, guinea pigs and cats). 1. Single injections of crude papain produce profound changes in the epiphysial cartilage. These changes disappear within a few days. They are radiographically visible as a narrowing of the epiphysial plates. Histologically, the formation of bony trabeculae in the primary spongiosa is found to be arrested. 2. Repeated injections of crude papain cause permanent damage to the epiphysial cartilage, often with bony closure. Consequently, the longitudinal growth of the injected animals, when compared to the controls, is found to be retarded or permanently arrested, and there may be severe bony deformity. 3. Using inactivated crystalline papain, we have been able to produce changes in the epiphysial cartilage identical with those caused by the injection of crude papain. 4. The injection of crude papain is dispelled by the addition of cysteine, but retains its full strength if hydrogen peroxide is added


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 76 - 76
1 Aug 2017
Sierra R
Full Access

The number of cemented femoral stems implanted in the United States continues to slowly decrease over time. Approximately 10% of all femoral components implanted today are cemented, and the majority are in patients undergoing hip arthroplasty for femoral neck fractures. The European experience is quite different, in the UK, cemented femoral stems account for approximately 50% of all implants, while in the Swedish registry, cemented stems still account for the majority of implanted femoral components. Recent data demonstrating some limitations of uncemented fixation in the elderly for primary THA, may suggest that a cemented femoral component may be an attractive alternative in such a group. Two general philosophies exist with regards to the cemented femoral stem: Taper slip and Composite Beam. There are flagship implants representing both philosophies and select designs have shown excellent results past 30 years. A good femoral component design and cementing technique, however, is crucial for long-term clinical success. The authors' personal preference is that of a “taper slip” design. The cemented Exeter stem has shown excellent results past 30 years with rare cases of loosening. The characteristic behavior of such a stem is to allow slight subsidence of the stem within the cement mantle through the process of cement creep. One or two millimeters of subsidence in the long-term have been observed with no detrimental clinical consequences. There have been ample results in the literature showing the excellent results at mid- and long-term in all patient groups. The authors' current indications for a cemented stem include the elderly with no clear and definitive cutoff for age, most likely in females, THA for femoral neck fracture, small femoral canals such as those patients with DDH, and occasionally in patients with history of previous hip infection. Modern and impeccable cement technique is paramount for durable cemented fixation. It is important to remember that the goal is interdigitation of the cement with cancellous bone, so preparing the femur should not remove cancellous bone. Modern technique includes distal plugging of the femoral canal, pulsatile lavage, drying of the femoral canal with epinephrine or hydrogen peroxide, retrograde fill of the femoral canal with cement with appropriate suction and pressurization of the femoral cement into the canal prior to implantation of the femoral component. The dreaded “cement implantation syndrome” leading to sudden death can be avoided by appropriate fluid resuscitation prior to implanting the femoral component. This is a extremely rare occurrence today with reported mortality for the Exeter stem of 1 in 10,000. A cemented femoral component has been shown to be clinically successful at long term. Unfortunately, the art of cementing a femoral component has been lost and is rarely performed in the US. The number of cemented stems unfortunately may continue to go down as it is uncommonly taught in residency and fellowship, however it might find a resurgence as the limits of uncemented fixation in the elderly are encountered. National joint registers support the use of cemented femoral components, and actually demonstrate higher survivorship at short term when compared to all other uncemented femoral components. A cemented femoral component should be in the hip surgeons' armamentarium when treating patients undergoing primary and revision THA