Aims. Medial unicompartmental knee arthroplasty (UKA) is undertaken in patients with a passively correctable varus deformity. Our hypothesis was that restoration of natural soft tissue tension would result in a comparable lower limb alignment with the contralateral normal lower limb after mobile-bearing medial UKA. Patients and Methods. In this retrospective study, hip-knee-ankle (HKA) angle, position of the weight-bearing axis (WBA) and knee joint line obliquity (KJLO) after mobile-bearing medial UKA was compared with the normal (clinically and radiologically) contralateral lower limb in 123 patients. Results. Postoperatively,
Introduction. The hip-knee-ankle (HKA) angle between the mechanical axis of the femur (FM) and the mechanical axis of the tibia (TM) is the standard parameter to assess the coronal alignment of the lower extremity. TM is the line between the center of the tibial spines notch (Point T) and the center of the tibial plafond. However, this theory is based on the premise that TM coincides the anatomical axis of the tibia (TA). Fig.1a shows typical varus knee with medial shift of the tibial articular surface. In this case, TM does not coincide TA. Fig. 2 demonstrates the error of
INTRODUCTION. The restoration of physiological kinematics is one of the goals of a total knee arthroplasty (TKA). Navigation systems have been developed to allow an accurate and precise placement of the implants. But its application to the intraoperative measurement of knee kinematics has not been validated. The hypothesis of this study was that the measurement of the knee axis, femoral rotation, femoral translation with respect to the tibia, and medial and lateral femorotibial gaps during continuous passive knee flexion by the navigation system would be different from that by fluoroscopy taken as reference. MATERIAL – METHODS. Five pairs of knees of preserved specimens were used. The e.Motion FP ® TKA (B-Braun Aesculap, Tuttlingen, Germany) was implanted using the OrthoPilot TKA 4.3 version and Kobe version navigation system (B-Braun Aesculap, Tuttlingen, Germany). Kinematic recording by the navigation system was performed simultaneously with fluoroscopic recording during a continuous passive flexion-extension movement of the prosthetic knee. Kinematic parameters were extracted from the fluoroscopic recordings by image processing using JointTrack Auto ® software (University of Florida, Gainesville, USA). The main criteria were the axis of the knee measured by the angle between the center of the femoral head, the center of the knee and the center of the ankle (HKA), femoral rotation, femoral translation with respect to the tibia, and medial and lateral femorotibial gaps. The data analysis was performed by a Kappa correlation test. The agreement of the measurements was assessed using the intraclass correlation coefficient (ICC) and its 95% confidence interval. RESULTS. The respective CCIs were as follows:
Background. Alignment and soft tissue (ligament) balance are two variables that are under the control of a surgeon during replacement arthroplasty of the knee. Mobile bearing medial unicompartmental knee replacements have traditionally advocated sizing the prosthesis based on soft tissue balance while accepting the natural alignment of the knee, while fixed bearing prosthesis have tended to correct alignment to a pre planned value, while meticulously avoiding overcorrection. The dynamic loading parameters like peak adduction moment (PKAM) and angular adduction Impulse (Add Imp) have been studied extensively as proxies for medial compartment loading. In this investigation we tried to answer the question whether correcting static alignment, which is the only alignment variable under the control of the surgeon actually translates into improvement in dynamic loading during gait. We investigated the effect of correction of static alignment parameter Hip Knee Ankle (HKA) angle and dynamic alignment parameter in coronal plane, Mean Adduction angle (MAA) on 1st Peak Knee Adduction Moment (PKAM) and Angular Adduction Impulse (Add Imp) following medial unicompartmental knee replacements. Methods. Twenty four knees (20 patients) underwent instrumented gait analysis (BTS Milan, 12 cameras and single Kistler force platform measuring at 100 Hz) before and after medial uni compartmental knee replacement. The alignment was measured using long leg alignment views, to assess Hip Knee Ankle (HKA) angle. Coronal plane kinetics namely 1st Peak Knee Adduction Moment (PKAM) and angular adduction impulse (Add Imp)- which is the moment time integral of the adduction moment curve were calculated to assess medial compartment loading. Single and multiple regression analyses were done to assess the effect of static alignment parameters (HKA angle) and dynamic coronal plane alignment parameters (Mean Adduction Angle – MAA) on PKAM and Add Imp. Results. 12 knees had mobile bearing prosthesis implanted while the other 12 had fixed bearing prosthesis. The mean correction for
Osteotomies for valgus deformity are much less frequent than those for varus deformity as evidenced by published series which are, on one hand, less numerous and on the other hand, based on far fewer cases. For genu varum deformity, it has been proved that navigation allows to reach easier the preoperative correction goal. Our hypothesis was that navigation for genu valgum could be as accurate as for genu varum deformity. The aim of this paper was to present the mid-term results of 29 computer-assisted osteotomies for genu valgum deformity performed between September 2001 and March 2013. The series was composed of 27 patients (29 knees), 20 females and 7 males, aged from 15 to 63 years (mean age: 42.4+/−14.3 years). The preoperative functional status was evaluated according to the Lyshölm-Tegner score. The mean score was of 64+/−20.5 points (18–100). The stages of osteoarthritis were evaluated according to modified Ahlbäck's criteria. We operated on 12 stage 1, 9 stage 2, 5 stage 3 and 1 stage 4. 2 female patients had no osteoarthritis but a particularly unesthetic deformity (of which one was related to an overcorrected tibial osteotomy). The pre and postoperative
Introduction. The current standard for alignment in total knee arthroplasty (TKA) is neutral mechanical axis within 3° of varus or valgus deviation [1]. This configuration has been shown to reduce wear and optimally distribute load on the polyethylene insert [2]. Two key factors (patient-specific hip-knee-ankle (HKA) angle and surgical component alignment) influence load distribution, kinematics and soft-tissue strains across the tibiofemoral (TF) joint. Improvements in wear characteristics of TKA materials have facilitated a trend for restoring the anatomic joint line [3]. While anatomic component alignment may aid in restoring more natural kinematics, the influence on joint loads and soft-tissue strains should be evaluated. The purpose of the current study was to determine the effect of varus component alignment in combination with a variety of HKA limb alignments on joint kinematics, loads and soft-tissue strain. Methods. A dynamic three-dimensional finite element model of the lower limb of a TKA patient was developed. Detailed description of the model has been previously published [4]. The model included femur, tibia and patella bones, TF ligaments, patellar tendon, quadriceps and hamstrings, and was virtually implanted with contemporary cruciate-retaining fixed-bearing TKA components. The model was initially aligned in ideal mechanical alignment with neutral HKA limb alignment. A design-of-experiments (DOE) study was performed whereby component placement was altered from neutral to 3° and 7° varus alignment, and
Navigation of Uni knee arthroplasty (UKA) is not common. Usually the software includes navigation of the tibial as well as the femoral implant. In order to simplify the surgical procedure we thought that navigation of the tibial plateau alone could be a good option. Since 2005 we have been using a mobile bearing UKA of which the ancillary is based on dependent bone cuts. The tibial cut is made first and the femoral cut is automatically performed using cutting blocks inserted between the tibial cut and the distal end of the femur. Although we are satisfied with this procedure, it is not rare we have some difficulties getting the right under correction needed to get a good long-term result. The aim of this paper was to present our computer-assisted UKA technique and our preliminary radiological results in genu varum (17 cases) as well as genu valgum (6 cases) deformities. The series was composed of 23 patients, 10 females and 13 males, aged from 63 to 88 years old (mean age: 75 +/− 8). The mean preoperative
Introduction. Coronal misalignment of the lower limbs is closely related to the onset and progression of osteoarthritis. In cases of severe genu varus or valgus, evaluating this alignment can assist in choosing specific surgical strategies. Furthermore, restoring satisfactory alignment after total knee replacement promotes longevity of the implant and better functional results. Knee coronal alignment is typically evaluated with the Hip-Knee-Ankle (HKA) angle. It is generally measured on standing AP long-leg radiographs (LLR). However, patient positioning influences the accuracy of this 2D measurement. A new 3D method to measure coronal lower limb alignment using low-dose EOS images has recently been developed and validated. The goal of this study was to evaluate the relevance of this technique when determining knee coronal alignment in a referral population, and more specifically to evaluate how the
Excessive under correction of varus deformity may lead to early failure and overcorrection may cause progressive degeneration of the lateral compartment following medial unicompartmental knee arthroplasty (UKA). However, what influences the postoperative limb alignment in UKA is still not clear. This study aimed to evaluate postoperative limb alignment in minimally-invasive Oxford medial UKAs and the influence of factors such as preoperative limb alignment, insert thickness, age, BMI, gender and surgeon's experience on postoperative limb alignment. Clinical and radiographic data of 122 consecutive minimally-invasive Oxford phase 3 medial unicompartmental knee arthroplasties (UKAs) performed in 109 patients by a single surgeon was analysed. Ninety-four limbs had a preoperative hip-knee-ankle (HKA) angle between 170°-180° and 28 limbs (23%) had a preoperative hip-knee-ankle (HKA) angle <170°. The mean preoperative
Introduction. At a minimum 12 years follow-up the Authors performed a matched paired study between 2 groups: Bi-Unicompartimental (femoro-tibial) versus Total Knee Replacements, both navigated, they hypothesised that Bi-UKR guarantees a clinical score and patient satisfaction at least similar to TKR without differences in survivorship. Materials and Methods. 19 BI-UKR (1999–2003) were included in the study (group A). Every single patients in group A was matched to a computer-assisted TKR implanted in the same period (group B). The clinical outcome was evaluated using the Knee Society Score, the GIUM Score and the WOMAC Arthritis Index. Radiographically the
The hip centre (HC) in Computer Assisted Orthopedic Surgery (CAOS) can be determined either with anatomical (AA) or functional approaches (FA). AA is considered as the reference while FA compute the hip centre of rotation (CoR). Four main FA can be used in CAOS: the Gammage, Halvorsen, pivot, and least-moving point (LMP) methods. The goal of this paper is to evaluate and compare with an in-vitro experiment (a) the four main FA for the HC determination, and (b) the impact on the HKA. The experiment has been performed on six cadavers. A CAOS software application has been developed for the acquisitions of (a) the hip rotation motion, (b) the anatomical HC, and (c) the
Total knee arthroplasty(TKA) for patients with severe varus deformity has become common operation in Japan because of the rapid aging of the population. Treatment of severe malalignment, instability and bone defects is important. Here we report the clinical results of total knee arthroplasty for 23 knees with severe varus deformity. We defined a severe varus knee femorotibial angle(FTA) as one exceeding 195 degrees. The average observation period was 64 months. Autologous bone graft was performed for 3 knees and augmentation and long tibia stem was used for 3 knees. We used SF-36 for clinical evaluation. Image assessment was based on the standing HKA(Hip-Knee-Ankle)angle, and the Knee Society TKA roentgenographic evaluation and scoring system. The mean SF-36 score improved from 47.6 points to 63.7 points after TKA. The standing mean
Double level osteotomy (DLO) for severe genu varum is not a common technique. We performed our first computer-assisted double level osteotomy (CADLO) in March 2001 and we published our preliminary results in 2005 and 2007. The rationale to perform this procedure is to avoid oblique joint line in order to have less difficulty in case of revision to a total knee arthroplasty (TKA). The goal of this paper is to present the results of 37 cases operated on between August 2001 and January 2010. The series was composed of 35 patients (two bilateral), nine females and 26 males, aged from 39 to 64 years old (mean age: 50.5 +/− 7.5). We operated on 20 right knees and 17 left ones. The mean BMI was 29.3 +/− 4.3 for a mean height of 1.71 m and a mean weight of 85.8 kg. The functional status was evaluated according to the LYSHÖLM and TEGNER score. The mean score was of 42.4 +/− 8.9 points (22–69). According to modified AHLBÄCK criteria we operated on seven stage 2, 22 stage 3, five stage 4 and two stage 5. We measured
Aims. The aims of this retrospective study were to determine the incidence of extra-articular deformities (EADs), and determine their effect on postoperative alignment in knees undergoing mobile-bearing, medial unicompartmental knee arthroplasty (UKA). Patients and Methods. Limb mechanical alignment (hip-knee-ankle angle), coronal bowing of the femoral shaft and proximal tibia vara or medial proximal tibial angle (MPTA) were measured on standing, full-length hip-to-ankle radiographs of 162 patients who underwent 200 mobile-bearing, medial UKAs. Results. Incidence of EAD was 7.5% for coronal femoral bowing of >5°, 67% for proximal tibia vara of >3° (MPTA<87°) and 24.5% for proximal tibia vara of >6° (MPTA<84°). Mean postoperative
Background. The posterior slope of the tibial component in total knee arthroplasty (TKA) has been reported to vary widely even with computer assisted surgery. In the present study, we analyzed the influence of posterior tibial slope on one-year postoperative clinical outcome after posterior-stabilized (PS) -TKA to find out the optimal posterior slope of tibial component. Materials and Method. Seventy-three patients with varus type osteoarthritic (OA) knees underwent PS-TKA (Persona PS. R. ) were involved in this study. The mean age was 76.6 years old and preoperative
INTRODUCTION. The functional and anatomical results of TKA revisions are less good than a primary TKA. The TKA revision frequency increases and we must improve our surgeries and prepare the next standard of these surgeries. The aim of this study was to evaluate the CAOS / one stage strategie to treat the knee PJIs. MATERIALS. In this prospective study, between September 2011 and December 2014, 41 patients treated for chronic knee PJI in a one stage revision. For all of them, an imageless CAOS system (ExactechGPS, Blue- Ortho, Gieres) was used. A personalised profile of revision was created. All surgeries were performed with the same protocole and by using the same Optetrak CC knee components (Exactech, Gainesville, FL). All operations were performed by a single senior surgeon. Indications for the revision TKA were (1) revision of a primary TKA or unicondylar knee arthroplasty (n=27) or (2) revision of revisionTKA (n=15). The measurement of the
PURPOSE. Lateral osteoarthritis of the valgus knee is a challenging problem, especially for young and active patients, where prosthetic replacement is not indicated. The purpose of the present study is to evaluate clinically and radiographically 91 patients with valgus knee treated with distal femoral varus osteotomy in mid and long term follow-up. METHODS. A clinical retrospective evaluation based on IKDC, OXFORD and WOMAC scores of 91 patients at 4 to 10 years of follow-up was performed. Subjective evaluation was based on a VAS for pain self-assessment. Radiographic evaluation was performed by an independent observer of all 91 patients at 2 to 6 years of follow-up. A survival analysis was performed assuming revision for any reason as primary endpoint. RESULTS. The present study reported a marked improvement in clinical score at a mean 8,3 years of follow-up with statistical significance (p<0.005). The radiographic evaluation revealed a reduction of 7,0° and 4,2° of FTA and
A comparative study on CT- and MRI-based patient specific matched guides (PSG) from the same manufacturer for the implantation of total knee arthroplasty (TKA) has not been undertaken. A total of 64 knees operated with CT based PSG was divided into two groups, with (n=32, CT. HK. ) or without (n=32, CT. NA. ) a history of a knee operation, and matched with a control group operated with MRI based PSG(n=64). Alignment of the biomechanical axis of the leg (HKA angle) and accuracy of individual implant alignment were measured on digital long-standing AP and sagittal radiographs. HKA and implant angles <3° deviation of the preoperative planned alignment were defined as correct. Peroperative implant size, OR time (min) and blood loss (ml) were compared. The average
Objective. To explore whether good postoperative alignment could be obtained through simple individual valgus resection angle using common instruments in total knee arthroplasty with lateral bowing femur. Methods. Data of 46 TKAs with lateral bowing femur were collected prospectively, the center of the femoral intercondylar notch was the fixed drilling hole whether preoperative planning or intraoperative implementing. The intramedullary rod was put into the femur as deep as possible, until completely entrance or the distal point of the rod contact with the lateral cortical bone of the femur, which prevent the further entrance of the rod. Individual valgus resection angle ranging from 7°to 9°was performed according to preoperative planning, followed by meticulous assessment of matching between cutting surface and valgus resection angle. Postoperative hip-knee-ankle (HKA) angle?medial tibial plate angle and position of lower extremity alignment passing through the tibial plate were measured. Results. The preoperative measurement valgus resection angle include 14 cases of 8°, 13 cases of 9°, 5 cases of 10°, 2 case of 11°. The postoperative mean medial tibial plate angle was 89.5°±0.5°, mean
Although total knee arthroplasty (TKA) is a largely successful procedure to treat end-stage knee osteoarthritis (OA), some studies have shown postoperative abnormal knee kinematics. Computer assisted orthopaedic surgery (CAOS) technology has been used to understand preoperative knee kinematics with an open joint (arthrotomy). However, limited information is available on the impact of arthrotomy on the knee kinematics. This study compared knee kinematics before and after arthrotomy to the native knee using a CAOS system. Kinematics of a healthy knee from a fresh frozen cadaver with presumably intact PCL were evaluated using a custom software application in an image-free CAOS system (ExactechGPS, Blue-Ortho, Grenoble, FR). At the beginning of the test, four metal hooks were inserted into the knee away from the joint line (one on each side of the proximal tibia and the distal femur) for the application of 50N compressive load to simulate natural knee joint. Prior to incision, one tracker was attached to each tibia and femur on the diaphysis. Intact knee kinematics were recorded using the CAOS system by performing passive range of motion 3 times. Next, a computer-assisted TKA procedure was initiated with acquisition of the anatomical landmarks. The system calculated the previously recorded kinematics within the coordinate system defined by the landmarks. The test was then repeated with closed arthrotomy, and again with open arthrotomy with patella maintained in the trochlea groove. The average femorotibial AP displacement and rotation, and