Introduction. Posterior
Introduction. Posterior
Introduction. Due to the predictability of outcomes achieved with reverse shoulder arthroplasty (rTSA), rTSA is increasingly being used in patients where glenoid fixation is compromised due to presence of
INTRODUCTION. Preoperative planning software for anatomic total shoulder arthroplasty (ATSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of
Reverse total shoulder arthroplasty (RTSA) has a proven track record as an effective treatment for a variety of rotator cuff deficient conditions. However, glenoid erosion associated with the arthritic component of these conditions can present a challenge for the shoulder arthroplasty surgeon. Options for treatment of
Severe glenoid bone loss in patients with osteoarthritis with intact rotator cuff is associated with posterior glenoid bone loss and posterior humeral subluxation. Management of severe glenoid bone loss during shoulder arthroplasty is controversial and technically challenging and options range from humeral hemiarthroplasty, anatomic shoulder replacement with glenoid bone grafting or augmented glenoid component implantation, to reverse replacement with reaming to correct version or structural bone grafting or metallic augmentation of the bone deficiency. Shoulder replacement with severe glenoid bone loss is technically challenging and characterised by higher rates of complications and revisions. Hemiarthroplasty has limited benefit for pain relief and function especially if eccentric
Background. Virtual planning of shoulder arthroplasty has gained recent popularity. Combined with patients specific instrumentation, several systems have been developed that allow the surgeon to accurately appreciate and correct glenoid deformities in version and inclination. While each virtual software platform utilizes a consistent algorithm for calculating these measurements, it is imperative for the surgeon to recognize any differences that may exist amongst software platforms and characterize any variability. Methods. A case-control study of all CT scans of patients previously pre-operatively planned using MatchPoint SurgiCase® software were uploaded into the BluePrint software. The cohort represents surgical planning for total shoulder arthroplasty and reverse shoulder arthroplasty with varying degrees of glenoid deformity. Glenoid version and inclination will be recorded for each CT scan using both software platforms. Results. A total of 38 patient CT scans previously planned using MatchPoint Surgicase® software were uploaded into the BluePrint software. The mean difference for glenoid version between the two software programs was 2.497° (±1.724°) with no significant differences in measured glenoid version readings between BluePrint and SurgiCase software (p=0.8127). No significant differences were seen in the measured glenoid inclination between the two software programs (p=0.733), with a mean difference for glenoid inclination between the two software programs at 5.150° ± 3.733° (figure 1). A Bland-Altman plot determined the 95% limits of agreement between the two programs at −5.879 to 6.116 degrees of glenoid version and −12.05 to 12.75 degrees of glenoid inclination. There was a significant statistical agreement between the two software programs measuring glenoid version and inclination in relation to
A primary goal of shoulder arthroplasty is to place the components in anatomic version. However, traditional instrumentation does not accommodate
Background. Rotator cuff atrophy evaluated with computed tomography scans has been associated with asymmetric
The treatment of proximal humerus fractures remains controversial. The literature is full of articles and commentary supporting one method over another. Options include open reduction and internal fixation, hemiarthroplasty, and reverse shoulder arthroplasty. Treatment options in an active 65-year-old are exceptionally controversial given the fact that people in this middle-aged group still wished to remain active and athletic in many circumstances. A hemiarthroplasty offers the advantage of a greater range of motion, however, this has a high incidence of tuberosity malunion or nonunion and this is a very common reason for revision of that hemiarthroplasty for fracture to a reverse shoulder replacement. One recent study showed a 73% incidence of tuberosity malunion or nonunion in shoulders that had a revised hemiarthroplasty to a reverse shoulder replacement. Progressive
INTRODUCTION. Preoperative planning software for reverse total shoulder arthroplasty (RTSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. While anatomical studies have defined the range of normal values for glenoid version and inclination, there is no clear consensus on glenoid component selection and position for RTSA. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of
Background. The current use of a spherical prosthetic humeral head in total shoulder arthroplasty results in an imprecise restoration of the native geometry and improper placement of the center of rotation, maintained in a constant position, in comparison to the native head and regardless of glenoid component conformity. A radially-mismatched spherical head to allow gleno-humeral translation is a trade-off that decreases the contact area on the glenoid component, which may cause
Background. Use of a baseplate with a smaller diameter in reverse shoulder arthroplasty has been recommended, especially in patients with a small glenoid or insufficient bony stock due to severe
Reverse total shoulder arthroplasty (RTSA) is a well established treatment that provides reproducible results in the treatment of shoulder arthritis and rotator cuff deficiency in the older patient population. However, the results of arthroplasty in younger, more active patients are currently unclear and not as predictable. The purpose of this study is to evaluate the mid-term results of RTSA for patients aged younger than 60 years. A retrospective review of twenty-six patients (twenty six RTSAs) with a mean age of 58.3 years was performed. Minimum follow-up of 5 years was available at a mean follow-up of 73.3 months postoperatively (range, 60–84 months). The preoperative conditions compelling RTSA were as follows: failed rotator cuff repair (17), fracture sequelae (5), failed arthroplasty (1), and cuff tear arthropathy (CTA) (3). We assessed range-of-motion and strength, visual analog scale, American Shoulder and Elbow Surgeons (ASES), and Constant scores. Radiographs were also evaluated for component loosening and scapular notching. All patients were analyzed radiologically and clinically using patient-reported outcome measures. Active forward elevation improved from 56° to 134° and average active external rotation improved from 10.0° to 19.6°. Scores measured with a visual analog pain scale, the Constant score, and the American Shoulder and Elbow Surgeons (ASES) scale all improved significantly. The Visual analog scale (VAS) score for pain improved from 7.5 to 3.0 and the ASES score improved from 31.4 to 72.4, respectively. The normalized postoperative mean Constant score was 88.03. No radiograph showed loosening of the implant at follow-up. Complications included one traumatic subscapularis rupture at six weeks, and one case of periprosthetic fracture. The remaining twenty-four patients were satisfied with the outcome at the time of the latest follow-up and had returned to their desired activity. RTSA in younger patients provided significant subjective improvement in self-assessed shoulder comfort and substantial gain in overall function. Implant loosening and
Contracture of the anterior musculature causes posterior humeral head subluxation and results in a posterior load concentration on the glenoid. This reduced contact area causes
Background. Total shoulder arthroplasty is technically demanding in regards to implantation of the glenoid component, especially in the setting of increased glenoid deformity and posterior
Glenohumeral arthritis is associated with eccentric posterior
Glenoid replacement is a manual bone removal procedure that can be difficult for surgeons to perform. Surgical robotics have been utilized successfully in hip and knee orthopaedic procedures but there are no systems currently available in the shoulder. These robots tend to have low adoption rates by surgeons due to high costs, disruption of surgical workflow and added complexity. As well, these systems typically use optical tracking which needs a constant line-of-sight which is not conducive to a crowded operating room. The purpose of this work was developing and testing a surgical robotic system for glenoid replacement. The new surgical system utilizes flexible components that tether a Stewart Platform robot to the patient through a patient specific 3D printed mount. As the robot moves relative to the bone, reaction loads from the flexible components bending are measured by a load cell allowing the robot to “feel” its way around. As well, a small bone burring tool was attached to the robot to facilitate the necessary bone removal. The surgical system was tested against a fellowship-trained surgeon performing standard surgical techniques. Both the robot and the surgeon performed glenoid replacement on two different scapula analogs: standard anatomy and posterior
Shoulder arthroplasty has experienced exponential growth in the past 10–15 years, largely due to improvements in anatomical design, increased application of technology to address various clinical pathology, and improved access to experienced shoulder surgeons. Glenohumeral arthritis has historically been the most common indication for a shoulder replacement, and
Background. The Copeland shoulder resurfacing arthroplasty (CSRA) (Figure1) is a cementless, pegged humeral head surface replacement which has been in clinical use since 1986. The indications for CSRA are more or less the same as conventional stemmed arthroplasty. This procedure can be considered for all patients who require shoulder replacement due to GHJ arthritis resulted from primary or secondary OA, RA, and other variations of inflammatory arthritis. It is also suggested as the first choice option for relatively young patients with post-traumatic arthritis, avascular necrosis (AVN), and instability arthropathy. This observational study reports functional and radiological outcome in CSRA during 4 years follow-up. Methods. 109 consecutive patients with primary osteoarthritis (45.9%), rheumatoid arthritis (39.4%), rotator cuff arthropathy (9.2%), and avascular necrosis (5.5%) underwent CSRA. Patients including 68 females (63%) and 41 males (37%) underwent this procedure (63 right-sided and 46 left-sided including 9 bilateral shoulders). The outcome assessment included pain and satisfaction, Oxford Shoulder Score (OSS), Constant Score (CS), and SF-12. Imaging was reviewed for glenoid morphology (Walch classification) (Figure2) and humeral head migration. The average follow-up period was 4 years, (range: 1 to 10 years). Results. Primary OA and RA were the most common underlying pathologies in 45.9% and 39.4% of patients, respectively, followed by RCA (9.2%) and AVN (5.5%). Approximately 89% of arthroplasties were primary and 11% were revisions. Other body joints were affected in 85% of patients and nearly 70% of them had accompanying health conditions and co-morbidities (e.g. heart diseases, hypertension, and diabetes mellitus). A strong correlation found for OSS regarding CS and physical SF-12 subscale. Pain and physical limitation had negative correlation with satisfaction and shoulder-specific tools. Walch type A (68%) and superior HH migration (16.8%) were the commonest radiographic presentations. There was high correlation between migration and physical limitation, pain, satisfaction, OSS, and CS. A significant difference noted for OSS, CS, physical limitation, pain and satisfaction between migration and non-migration groups. Discussion. The CSRA provides pain relief and a good functional outcome in many patients. The main disadvantage is the technical difficult of implanting a glenoid which many surgeons now perceive as being essential in order to gain early pain relief and a better functional outcome. Our results show a predictable relationship between outcome and pathology, with osteoarthritic patients having the most favourable outcome.