Advertisement for orthosearch.org.uk
Results 1 - 20 of 1400
Results per page:
Bone & Joint Research
Vol. 2, Issue 12 | Pages 264 - 269
1 Dec 2013
Antoniades G Smith EJ Deakin AH Wearing SC Sarungi M

Objective. This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability. Methods. Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm. 3. and 0.45 g/cm. 3. ). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests. Results. There was no statistically significant difference in seating force (p = 0.104) or primary stability (pull-out p = 0.171, lever-out p = 0.087) of the two components in the low-density substrate. Similarly, in the high-density substrate, there was no statistically significant difference in the peak pull-out force (p = 0.154) or lever-out moment (p = 0.574) between the designs. However, the PSL component required a significantly higher seating force than the hemispherical cup in the high-density bone analogue (p = 0.006). Conclusions. Higher seating forces associated with the PSL design may result in inadequate seating and increased risk of component malpositioning or acetabular fracture in the intra-operative setting in high-density bone stock. Our results, if translated clinically, suggest that a purely hemispherical geometry may have an advantage over a peripherally enhanced geometry in high density bone stock. Cite this article: Bone Joint Res 2013;2:264–9


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1774 - 1782
1 Dec 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims. The aim of this study was to determine if uncemented acetabular polyethylene (PE) liner geometry, and lip size, influenced the risk of revision for instability or loosening. Methods. A total of 202,511 primary total hip arthroplasties (THAs) with uncemented acetabular components were identified from the National Joint Registry (NJR) dataset between 2003 and 2017. The effect of liner geometry on the risk of revision for instability or loosening was investigated using competing risk regression analyses adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, surgeon grade, surgical approach, head size, and polyethylene crosslinking. Stratified analyses by surgical approach were performed, including pairwise comparisons of liner geometries. Results. The distribution of liner geometries were neutral (39.4%; 79,822), 10° (34.5%; 69,894), 15° (21.6%; 43,722), offset reorientating (2.8%; 5705), offset neutral (0.9%; 1,767), and 20° (0.8%; 1,601). There were 690 (0.34%) revisions for instability. Compared to neutral liners, the adjusted subhazard ratios of revision for instability were: 10°, 0.64 (p < 0.001); 15°, 0.48 (p < 0.001); and offset reorientating, 1.6 (p = 0.010). No association was found with other geometries. 10° and 15° liners had a time-dependent lower risk of revision for instability within the first 1.2 years. In posterior approaches, 10° and 15° liners had a lower risk of revision for instability, with no significant difference between them. The protective effect of lipped over neutral liners was not observed in laterally approached THAs. There were 604 (0.3%) revisions for loosening, but no association between liner geometry and revision for loosening was found. Conclusion. This registry-based study confirms a lower risk of revision for instability in posterior approach THAs with 10° or 15° lipped liners compared to neutral liners, but no significant difference between these lip sizes. A higher revision risk is seen with offset reorientating liners. The benefit of lipped geometries against revision for instability was not seen in laterally approached THAs. Liner geometry does not seem to influence the risk of revision for loosening. Cite this article: Bone Joint J 2021;103-B(12):1774–1782


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1669 - 1677
1 Nov 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims. To determine if primary cemented acetabular component geometry (long posterior wall (LPW), hooded, or offset reorientating) influences the risk of revision total hip arthroplasty (THA) for instability or loosening. Methods. The National Joint Registry (NJR) dataset was analyzed for primary THAs performed between 2003 and 2017. A cohort of 224,874 cemented acetabular components were included. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using log-binomial regression adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking, and prosthetic head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death. Results. The distribution of acetabular component geometries was: LPW 81.2%; hooded 18.7%; and offset reorientating 0.1%. There were 3,313 (1.5%) revision THAs performed, of which 815 (0.4%) were for instability and 838 (0.4%) were for loosening. Compared to the LPW group, the adjusted subhazard ratio of revision for instability in the hooded group was 2.31 (p < 0.001) and 4.12 (p = 0.047) in the offset reorientating group. Likewise, the subhazard ratio of revision for loosening was 2.65 (p < 0.001) in the hooded group and 13.61 (p < 0.001) in the offset reorientating group. A time-varying subhazard ratio of revision for instability (hooded vs LPW) was found, being greatest within the first three months. Conclusion. This registry-based study confirms a significantly higher risk of revision after cemented THA for instability and for loosening when a hooded or offset reorientating acetabular component is used, compared to a LPW component. Further research is required to clarify if certain patients benefit from the use of hooded or offset reorientating components, but we recommend caution when using such components in routine clinical practice. Cite this article: Bone Joint J 2021;103-B(11):1669–1677


Bone & Joint Research
Vol. 10, Issue 12 | Pages 780 - 789
1 Dec 2021
Eslam Pour A Lazennec JY Patel KP Anjaria MP Beaulé PE Schwarzkopf R

Aims. In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Methods. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data. Results. The stem with a rectangular neck has increased internal and external rotation with a quatrefoil cross-section compared to a cone in a cylindrical neck. Modification of the cup orientation and pelvic tilt affected the direction of projection of the cone or quatrefoil shape. The mean increase in internal rotation with a rectangular neck was 3.4° (0° to 7.9°; p < 0.001); for external rotation, it was 2.8° (0.5° to 7.8°; p < 0.001). Conclusion. Our study shows the importance of attention to femoral implant design for the assessment of prosthetic impingement. Any universal mathematical model or computer simulation that ignores each stem’s unique neck geometry will provide inaccurate predictions of prosthetic impingement. Cite this article: Bone Joint Res 2021;10(12):780–789


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 7 - 7
1 Jun 2023
Harris PC Lacey S Steward A Sertori M Homan J
Full Access

Introduction. The various problems that are managed with circular external fixation (e.g. deformity, complex fractures) also typically require serial plain x-ray imaging. One of the challenges here is that the relatively radio-opaque components of the circular external fixator (e.g. the rings) can obscure the view of the area of interest (e.g. osteotomy site, fracture site). In this presentation we describe how the geometry of the x-ray beam affects the produced image and how we can use knowledge of this to our advantage. Whilst this can be applied to any long bone, we have focused on the tibia, given that it's the most common long bone that is treated by circular external fixation. Materials & Methods. In the first part of the presentation we describe the known attributes (geometry) of the x-ray beam and postulate what effect it would have when we x-ray a long bone that is surrounded by a circular external fixator. In the second part we demonstrate this in practice using a tibia and a 3 ring circular external fixator. Differing x-ray beam orientations are used to demonstrate both how the geometry of the beam affects the produced image and how we can use this to our advantage to better visualise part of the bone. Results. The practical part of the study confirmed the theoretical part. Conclusions. Knowledge of the beam geometry can be used to minimise the obscuring nature of the circular fixator. This technique is simple and can be easily taught to the radiographer. It is a useful adjunct for the limb reconstruction surgeon


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 79 - 79
1 Dec 2022
Langohr GD Mahaffy M Athwal G Johnson JA
Full Access

Patients receiving reverse total shoulder arthroplasty (RTSA) often have osseous erosions because of glenohumeral arthritis, leading to increased surgical complexity. Glenoid implant fixation is a primary predictor of the success of RTSA and affects micromotion at the bone-implant interface. Augmented implants which incorporate specific geometry to address superior erosion are currently available, but the clinical outcomes of these implants are still considered short-term. The objective of this study was to investigate micromotion at the glenoid-baseplate interface for a standard, 3 mm and 6 mm lateralized baseplates, half-wedge, and full-wedge baseplates. It was hypothesized that the mechanism of load distribution from the baseplate to the glenoid will differ between implants, and these varying mechanisms will affect overall baseplate micromotion. Clinical CT scans of seven shoulders (mean age 69 years, 10°-19° glenoid inclinations) that were classified as having E2-type glenoid erosions were used to generate 3D scapula models using MIMICS image processing software (Materialise, Belgium) with a 0.75 mm mesh size. Each scapula was then repeatedly virtually reconstructed with the five implant types (standard,3mm,6mm lateralized, and half/full wedge; Fig.1) positioned in neutral version and inclination with full backside contact. The reconstructed scapulae were then imported into ABAQUS (SIMULIA, U.S.) finite element software and loads were applied simulating 15°,30°,45°,60°,75°, and 90° of abduction based on published instrumented in-vivo implant data. The micromotion normal and tangential to the bone surface, and effective load transfer area were recorded for each implant and abduction angle. A repeated measures ANOVA was used to perform statistical analysis. Maximum normal micromotion was found to be significantly less when using the standard baseplate (5±4 μm), as opposed to the full-wedge (16±7 μm, p=0.004), 3 mm lateralized (10±6 μm, p=0.017), and 6 mm lateralized (16±8 μm, p=0.007) baseplates (Fig.2). The half-wedge baseplate (11±7 μm) also produced significantly less micromotion than the full-wedge (p=0.003), and the 3 mm lateralized produced less micromotion than the full wedge (p=0.026) and 6 mm lateralized (p=0.003). Similarly, maximum tangential micromotion was found to be significantly less when using the standard baseplate (7±4 μm), as opposed to the half-wedge (12±5 μm, p=0.014), 3 mm lateralized (10±5 μm, p=0.003), and 6 mm lateralized (13±6 μm, p=0.003) baseplates (Fig.2). The full wedge (11±3 μm), half-wedge, and 3 mm lateralized baseplate also produced significantly less micromotion than the 6 mm lateralized (p=0.027, p=012, p=0.02, respectively). Both normal and tangential micromotion were highest at the 30° and 45° abduction angles (Fig.2). The effective load transfer area (ELTA) was lowest for the full wedge, followed by the half wedge, 6mm, 3mm, and standard baseplates (Fig.3) and increased with abduction angle. Glenoid baseplates with reduced lateralization and flat backside geometries resulted in the best outcomes with regards to normal and tangential micromotion. However, these types of implants are not always feasible due to the required amount of bone removal, and medialization of the bone-implant interface. Future work should study the acceptable levels of bone removal for patients with E-type glenoid erosion and the corresponding best implant selections for such cases. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 11 - 11
1 Feb 2020
Ruhr M Polster V Morlock M
Full Access

INTRODUCTION. Precise determination of material loss is essential for failure analysis of retrieved hip cups. To determine wear, the measured geometry of the retrieval hast to be compared to its pristine geometry, which usually is not available. There are different approaches to generate reference geometries to approximate the pristine geometry that is commonly assumed as sphere. However, the geometry of press fit cup retrievals might not be spherical due to deformation caused by excessive press-fitting. The effect of three different reference geometries on the determined wear patterns and material loss of pristine and worn uncemented metal-on-metal hip cups was determined. METHODS. The surfaces of two cups (ASR, DePuy, Leeds; one pristine, one a worn retrieval) were digitized using a coordinate measurement machine (CRYSTA-Apex S574, Mitutoyo; 3 µm accuracy). Both cups were measured undeformed and while being deformed between a clamp. Three different methods for generating reference geometries were investigated (PolyWorks|Inspector 2018, InnovMetric). Method 1: A sphere with the nominal internal cup dimensions was generated. Method 2: A sphere was fitted to the measured data points after removing those from worn areas (deviation > 3 µm is defined as wear) to eliminate the influence of manufacturing tolerances on the nominal diameter. Method 3: Measurements, which displayed visual deformation in the computed wear pattern based on the best fit sphere, were fitted with an ellipsoid. The direction of the deformation axes and the amount of deformation were used to scale the best fit ellipsoid. Linear wear was calculated from the distance of the respective reference geometry to the measured point cloud. Finally, material loss is defined as the difference in volume of the reference geometry and the measured geometry. RESULTS. The method used for generating the reference geometry affected the determined wear greatly. Using the nominal manufacturing radius (larger than the best fit radius) for the worn cup falsely indicates deposit. This leads to approx. 39 % less wear volume compared to the best fit sphere analysis. Using an ellipsoid as reference geometry for both deformed cups improves the determination of the wear pattern and indicates areas of material loss better than a reference sphere. Additionally, the mistake in material loss determination is decreased, especially for the worn cup almost exactly to the wear volume analyzed with the best fit sphere before deformation. DISCUSSION. For correct determination of material loss best fit geometries instead of nominal sizes have to be used to compensate the differences due to manufacturing tolerances. Furthermore, deformation always has to be eliminated to generate correct wear patterns and volumes. Using an ellipsoid as reference geometry improves the outcome. For generating an even more accurate reference geometry, the exact behavior of the cup during deformation must be understood. Limitations to this method are cups that do not provide pristine areas in order to generate an appropriate best fit geometry. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 84 - 84
1 Jun 2018
Rodriguez J
Full Access

Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for independent 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the transepicondylar axis. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. In summary, the use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of post-operative function. Compromises of fit and rotation are minimised, and implant overhang is potentially eliminated as a source of pain. Early results have shown objective improvements in clinical outcomes. Admittedly, this technology is limited to those patients with mild to moderate deformity at this time, since options like constraint and stems are not available. Yet these are the patients who can most clearly benefit from a higher functional state after reconstruction. Time will reveal if this potential can become a reproducible reality


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 35 - 35
1 Aug 2017
Rodriguez J
Full Access

Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the TEA. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. Given these ideals, to what extent are patients improved? The concept of reproducing bony anatomy is based on the pretext that form will dictate function, such that normal-leaning anatomy will tend towards normal-leaning kinematics. Therefore, we seek to evaluate knee function based on objective assessments of movement or kinematics. The use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of post-operative function. Compromises of fit and rotation are minimised, and implant overhang is potentially eliminated as a source of pain. Early results have shown objective improvements in clinical outcomes. Admittedly, this technology is limited to those patients with mild to moderate deformity at this time, since options like constraint and stems are not available. Yet these are the patients who can most clearly benefit from a higher functional state after reconstruction. Time will reveal if this potential can become a reproducible reality


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 140 - 140
1 Apr 2019
Wakelin E Walter W Bare J Theodore W Twiggs J Miles B
Full Access

Introduction. Kinematics post-TKA are complex; component alignment, component geometry and the patient specific musculoskeletal environment contribute towards the kinematic and kinetic outcomes of TKA. Tibial rotation in particular is largely uncontrolled during TKA and affects both tibiofemoral and patellofemoral kinematics. Given the complex nature of post- TKA kinematics, this study sought to characterize the contribution of tibial tray rotation to kinematic outcome variability across three separate knee geometries in a simulated framework. Method. Five 50. th. percentile knees were selected from a database of planned TKAs produced as part of a pre-operative dynamic planning system. Virtual surgery was performed using Stryker (Kalamazoo, MI) Triathlon CR and PS and MatOrtho (Leatherhead, UK) SAIPH knee medially stabilised (MS) components. All components were initially planned in mechanical alignment, with the femoral component neutral to the surgical TEA. Each knee was simulated through a deep knee bend, and the kinematics extracted. The tibial tray rotational alignment was then rotated internally and externally by 5° & 10°. The computational model simulates a patient specific deep knee bend and has been validated against a cadaveric Oxford Knee Rig. Preoperative CT imaging was obtained, landmarking to identify all patient specific axes and ligament attachment sites was performed by pairs of trained biomedical engineers. Ethics for this study is covered by Bellberry Human Research Ethics Committee application number 2012-03-710. Results and Discussion. From the 360 Knee Systems database, 1847 knees were analysed, giving an average coronal alignment of 4.25°±5.66° varus. Five knees were selected with alignments between 4.1° and 4.3° varus. Kinematic outcomes were averaged over the 5 knees. The component geometries resulted in characteristically distinct kinematics, in which femoral rollback was most constrained by the PS components, whereas tibiofemoral axial rotation was most constrained in MS components. Patella lateral shift was comparable amongst all components in extension, medialising in flexion. Patella shift remained more lateral in MS components compared to PS and CR. Average patella lateral shift, medial and lateral facet rollback separated by tibial tray rotation are shown for all component systems in Figure 1. Medial and lateral facet rollback in the PS and CR components are symmetrical and opposite, indicating that with tibial tray rotation, the tibiofemoral articulation point balances between component rotation and neutral alignment, reflecting the restoring force exerted by the simulated collateral ligaments. As such, with higher internal tibial rotation and subsequent lateralisation of the tubercle, patella lateral shift increases. MS medial and lateral facet rollback however are not symmetrical nor opposite, reflecting the chirality of the tibiofemoral articulation. With internal tibial tray rotation, relatively high lateral facet rollback is observed, lateralising the femoral component centre, giving the patella component a relatively more medial position. Conclusions. Component geometry was found here to produce characteristically distinct tibiofemoral and patellofemoral kinematics. Medial stabilised components reported asymmetric kinematic changes, compared to either CR or PS components, in which a higher rate of change was observed for internal tray rotation, indicating that neutral or external rotation of medial stabilised components will result in more predictable kinematic outcomes


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 265 - 265
1 Jul 2014
Shim V Fernandez J Gamage P Regnery C Hunter P Lloyd D Besier T
Full Access

Summary Statement. Subject specific FE models of human Achilles tendon were developed and optimum material properties were found. Stress concentration occurred at the midsection but dependent on stiffening and thinning of tendon, indicating that they are two major factors for tendon rupture. Introduction. Achilles tendon injuries are common, occurring about 250,000 per year in the US alone, yet the mechanisms of tendinopathy and rupture remain unknown. Most Achilles tendon ruptures occur at 2 to 6 cm above the insertion to the calcaneus bone. Previous angiographic studies have suggested that there is an avascular area in this region. However, it is not understood why that region receives poor blood supply and prone to rupture. The aim of this study is to investigate influence of geometry and material properties on Achilles tendon rupture with mechanical experiment and corresponding subject-specific finite element (FE) analysis. Patients & Methods. Mechanical experiment was performed on 10 fresh human Achilles tendons. High frequency ultrasound images were used to measure cross sectional areas at the midsection of the tendon. Cyclic testing was performed to measure mechanical properties and failure loads. Subject-specific FE models of these tendons were generated with Free Form Deformation (FFD) technique. FE mechanical simulations that mimic the experimental cyclic loading were performed on these subject specific models. Tendon material properties were described as transversely isotropic hyperelastic and the optimum material parameters for the human Achilles tendon were obtained. Linear portion of the cyclic loading data was used as boundary conditions. Measured strains from the experiment were compared with predicted strains from the FE analysis. This process was repeated until optimum parameters were found. The influence of geometry and material properties on the Achilles tendon rupture was then investigated– first with subject-specific geometry with average material properties and then with subject-specific material properties with average geometry. Results. Our results indicate that a significant variation exist in the geometry and material properties in human Achilles tendons. Stress concentrations occurred at the midsection of the tendon, supporting previous studies that reported tendon rupture at the region. In particular the thinning of midsection in geometry is highly correlated with the collagen uncrimpping rate in material properties where thinner midsection leads to faster uncrimpping of collagen fibres. Variations in geometry led to shifts in the location of stress concentration within the midsection while variations in material property led the change in the magnitude of stress concentration. Discussion/Conclusion. Our results indicate that Achilles tendon rupture is highly dependent on subject-specific geometry and material properties. In particular the mid section is the location of stress concentration but depending on the geometrical shape, multiple stress concentrations occur, making the tendon more prone to rupture while the material properties influenced the magnitude of stress concentration. Our results indicate stiffening and thinning of tendon may lead to higher risk for tendon rupture


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 51 - 51
1 Feb 2021
Smith L Cates H Freeman M Nachtrab J Komistek R
Full Access

Background. While posterior cruciate retaining (PCR) implants are a more common total knee arthroplasty (TKA) design, newer bi-cruciate retaining (BCR) TKAs are now being considered as an option for many patients, especially those that are younger. While PCR TKAs remove the ACL, the BCR TKA designs keep both cruciate ligaments intact, as it is believed that the resection of the ACL greatly affects the overall kinematic patterns of TKA designs. Various fluoroscopic studies have focused on determination of kinematics but haven't defined differentiators that affect motion patterns. This research study assesses the importance of the cruciate ligaments and femoral geometry for Bi-Cruciate Retaining (BCR) and Posterior Cruciate Retaining (PCR) TKAs having the same femoral component, compared to the normal knee. Methods. The in vivo 3D kinematics were determined for 40 subjects having a PCR TKA, 10 having a BCR TKA, and 10 having a normal knee, in a retrospective study. All TKA subjects had the same femoral component. All subjects performed a deep knee bend under fluoroscopic surveillance. The kinematics were determined during early flexion (ACL dominant), mid flexion (ACL/PCL transition) and deep flexion (PCL dominant). Results. During the first 30 degrees of flexion, the ACL played an important role, as subjects having a BCR TKA experienced kinematic patterns more similar to the normal knee. During mid flexion, both TKAs experienced random kinematic patterns, which could be due to the ACL and PCL being less active or resected in PCR TKA. In deeper flexion, both TKAs experienced kinematic patterns similar to the normal knee, thus supporting the assumption that the PCL played a dominant role [Fig. 1, Fig. 2]. All three groups generally experienced progressive axial rotation throughout flexion [Fig. 3]. On average, subjects having a PCR TKA experienced 112.3° of flexion, which was greater than the BCR subjects. Conclusions. Both the BCR TKA and normal groups experienced similar kinematic patterns, but the femoral geometrical differences from the anatomical condition may have influenced decreased motion compared to the normal knee. Both TKAs experienced similar kinematic patterns in deeper flexion, with the PCR TKA experiencing excellent weight-bearing flexion. Results from this study suggest that the cruciate ligaments can play a role in kinematics, but femoral geometry working with the ligaments may be an option to consider


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 46 - 46
1 Mar 2009
Iranpour F Cobb J Amis A
Full Access

Introduction: The normal relationships of the patellofemoral joint provide a basis for the evaluation of patients with patellofemoral abnormalities. Previous studies have often described the patellofemoral joint using X-rays which are encumbered with projectional inaccuracies. We have used CT to describe the geometry of this joint and its relationship to the tibiofemoral joint in terms of angles and distances. Materials and method: 33 patients had a CT scan prior to medial unicompartmental knee replacement. These patients have minimum patellofemoral joint disease. Special software was used to convert the scans to 3D and measure the distances and angles. The flexion axis of the tibiofemoral joint was found as the line connecting the centres of the spheres fitted to posterior femoral condyles. These two centres and femoral head centre form a frame of reference for reproducible femoral alignment. The trochlear geometry was defined by fitting circles and spheres to slices and surfaces, then constructing an axis through their centres. The geometry of the patella was established by fitting two planes to the proximal and anterior extra-articular surfaces of the patella. The relationships between these planes and the rest of the patella were explored. Results: The deepest points on the trochlear groove can be fitted to a circle with radius of 23mm (stdev 4mm) and an rms of 0.3mm. This centre is offset by 21mm (stdev 3mm) at an angle of 68° (stdev 8°) from the line connecting the midpoint between the centres of the femoral condyles and a point in the piriform fossa. On either end of this line, the articular surface of the trochlea can be fitted to spheres of radius 30mm (stdev 6mm) laterally and 27mm (stdev 5mm) and an rms of 0.4mm medially. The centres of the circle and the two spheres fall on a line with an rms of 1.1mm. The anterior and proximal patellar planes could be described as flat surfaces (rms of 0.4 and 0.3mm). The median ridge could be described as a straight line (rms of 0.2mm). The angle between planes was 112° (stdev 5°); the average angle between the proximal plane and the line on the medial ridge was 62° (stdev4°). The functional centre of the patella was defined as a point in the centre of 2 planes orthogonal to the sagital plane from the midpoint between the most proximal and most distal points on the median ridge. The length, width and thickness of the patellae were measured at 22mm +/−4mm, 47mm +/− 3mm and 24 mm+/− 2 mm. Discussion: This investigation has allowed us to characterise the patello-femoral joint geometry. The knowledge of the shapes of the surfaces of this joint and their relationships may help identify and explain the aetiology of patello-femoral dyplasia and other pathologies. It may also be of use in planning and performing joint reconstruction and may have implications for the design of patello-femoral replacements and the rules governing their position


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 77 - 77
1 Apr 2017
Rodriguez J
Full Access

Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the TEA. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. Given these ideals, to what extent are patients improved? The concept of reproducing bony anatomy is based on the pretext that form will dictate function, such that normal-leaning anatomy will tend towards normal-leaning kinematics. Therefore, we seek to evaluate knee function based on objective assessments of movement or kinematics. In summary, the use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of post-operative function. Compromises of fit and rotation are minimised, and implant overhang is potentially eliminated as a source of pain. Early results have shown objective improvements in clinical outcomes. Admittedly, this technology is limited to those patients with mild to moderate deformity at this time, since options like constraint and stems are not available. Yet these are the patients who can most clearly benefit from a higher functional state after reconstruction. Time will reveal if this potential can become a reproducible reality


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 133 - 133
1 Jul 2014
O'Kane C Vrancken A O'Rourke D Janssen D Ploegmakers M Buma P Fitzpatrick D Verdonschot N
Full Access

Summary. Our statistical shape analysis showed that size is the primary geometrical variation factor in the medial meniscus. Shape variations are primarily focused in the posterior horn, suggesting that these variations could influence cartilage contact pressures. Introduction. Variations in meniscal geometry are known to influence stresses and strains inside the meniscus and the articulating cartilage surfaces. This geometry-dependent functioning emphasizes that understanding the natural variation in meniscus geometry is essential for a correct selection of allograft menisci and even more crucial for the definition of different sizes for synthetic meniscal implants. Moreover, the design of such implants requires a description of 3D meniscus geometry. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size or shape driven. Patients & Methods. Sagittal knee MR images (n=35; 15 males, 20 females, aged 33±12) were acquired at 3 Tesla using a 3D SPACE sequence with isotropic resolution of 0.5×0.5×0.5mm. 3D models were generated by manual segmentation of the medial menisci from the MR scans. The surface of a reference meniscus was then described by 250 landmarks. Using an affine iterative closest point transformation, these landmarks were registered onto the full set of 3D models. Based on the set of corresponding landmarks, a point distribution model was created using the Shapeworks software (NITRC, University of Utah), an open source algorithm for constructing correspondence-based statistical models of sets of similar shapes. Several modules from Shapeworks and the Arthron software (UCD, Dublin) were used to perform principal component analysis (PCA) upon the set of landmarks. The results of the PCA enabled quantification and visualisation of the primary modes of variation in meniscal geometry. Results. The majority (77%) of variation in medial meniscus geometry was found to be due to sizing (principal component (PC) 1). Including the shape-related PC's 2 to 4, increased the cumulative percentage of represented geometry variation to over 90%. The independent shape variations described by PCs 2–4 all display larger variations in geometry of the posterior meniscal horn than the anterior section. Discussion. From this study, we can conclude that geometry variation of the medial meniscus is mainly determined by differences in size. However, since the posterior aspect of the medial meniscus experiences higher loads during daily activities than the anterior part, the shape variations described by PCs 2–4 may have a significant influence on cartilage contact pressures. Therefore, PCA alone does not provide sufficient information to define the number of implant sizes to cover a majority of the population. Analysis of the sensitivity of cartilage contact pressures to the shape variations identified in this analysis could provide the additional information needed


Cemented acetabular components commonly have a long posterior wall (LPW). Alternative components have a hooded or offset reorientating geometry, theoretically to reduce the risk of THR instability. We aimed to determine if cemented acetabular component geometry influences the risk of revision surgery for instability or loosening. The National Joint Registry for England, Wales and Northern Ireland (NJR) dataset was analysed for primary THAs performed between 2003 – 2017. A cohort of 224,874 cemented acetabular components were identified. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using binomial regression adjusting for age, gender, ASA grade, diagnosis, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking and head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death. Among the cohort of subjects included, the distribution of acetabular component geometries was: LPW – 81.2%, hooded – 18.7% and offset reorientating – 0.1%. There were 3,313 (1.47%) revision THAs performed, of which 815 (0.36%) were for instability and 838 (0.37%) were for loosening. Compared to the LPW group, the adjusted subhazard ratio of revision for instability in the hooded group was 2.29 (p<0.001) and 4.12 (p=0.047) in the offset reorientating group. Likewise, the subhazard ratio of revision for loosening was 2.43 (p<0.001) in the hooded group and 11.47 (p<0.001) in the offset reorientating group. A time-varying subhazard ratio of revision for instability (hooded vs LPW) was found, being greatest within the first 6 months. This Registry based study confirms a significantly higher risk of revision THA for instability and for loosening when a cemented hooded or offset reorientating acetabular component is used, compared to an LPW component. Further research is required to clarify if certain patients benefit from the use of hooded or offset reorientating components, but we recommend caution when using such components in routine clinical practice


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 3 - 3
1 Apr 2018
Joyal G Davignon R Schmidig G Gopalakrishnan A Rajaravivarma R Raja L Abitante P
Full Access

Introduction. A majority of the acetabular shells used today are designed to be press-fit into the acetabulum. Adequate initial stability of the press-fit implant is required to achieve biologic fixation, which provides long-term stability for the implant. Amongst other clinical factors, shell seating and initial stability are driven by the interaction between the implant's outer geometry and the prepared bone cavity. The goal of this study was to compare the seating and initial stability of commercially available hemispherical and rim-loading designs. Materials and Methods. The hemispherical test group (n=6) consisted of 66mm Trident Hemispherical shells (Stryker, Mahwah NJ) and the rim-loading test group (n=6) consisted of 66mm Trident PSL shells (Stryker, Mahwah NJ). The Trident PSL shell outer geometry is hemispherical at the dome and has a series of normalizations near the rim. The Trident Hemispherical shell outer geometry is completely hemispherical. Both shells are clinically successful and feature identical arc-deposited roughened CpTi with HA coatings on their outer geometry. Hemispherical cavities were machined in 20pcf polyurethane foam blocks (Pacific Research Laboratories, WA) to replicate the press-fit prescribed in each shell's surgical protocol. The cavity for the hemispherical design was machined to 65mm (1mm-under ream) and the cavity for the rim-loading design was machined to 67mm (1mm- over ream). Note that the rim-loading design features ∼2mm build-up of material at the rim when compared to the hemispherical design. The shells were seated into the foam blocks using a drop tower (Instron Dynatup 9250G, Instron Corporation, Norwood, MA) by applying 7 impacts of 6.58J/ea,. The number and energy of impacts are clinically relevant value obtained from surgeon data collection through a validated measurement technique. Seating height was measured from the shell rim to the cavity hemispherical equator (top surface foam block) using a height gage, thus, a low value indicates a deeply seated shell. A straight torque out bar was assembled to the threads at the shell dome hole and a linear load was applied with a MTS Mechanical Test Frame (MTS Corporation, Eden Prairie, MN) to create an angular displacement rate of 0.1 degrees/second about the shell center. Yield moment of the shell-cavity interface, representing failure of fixation, was calculated from the output of force, linear, displacement, and time. Two sample T-tests were conducted to determine statistical significance. Results. Seating height for the rim-loading design was 0.041 ± 0.005in (1.0 ± 0.1mm) compared to 0.049 ± 0.008in (1.2 ± 0.2mm) for the hemispherical design. Initial stability for the rim-loading design was 33.5 ± 2.9Nm compared to 29.9 ± 4.1Nm for the hemispherical design. Discussion. This study evaluated the seating height and initial stability of two different acetabular shell designs. Results indicate that there is no evidence for a difference in seating height (p > 0.05) and initial stability (p > 0.05) between rim-loading and hemispherical designs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 21 - 21
1 Jan 2017
Saffarini M Nover L Demey G Dejour D
Full Access

The study aimed to compare trochlear profiles in recent total knee arthroplasty (TKA) models and to determine whether they feature improvements compared to their predecessors. The hypothesis was that recent TKA models have more anatomic trochlear compartments and would display no signs of trochlear dysplasia. The authors analyzed the geometry of the 6 following TKA models using engineering software: PFC and Attune (DePuy), NexGen and Persona (Zimmer), Noetos and KneeTec (Tornier). The mediolateral trochlear profiles were plotted at various flexion angles (0°, 15°, 30° and 45°) to deduce the sulcus angle. Analysis of sulcus angles reveals general convergence of recent designs towards anatomic values. At 0° of flexion, sulcus angles of recent implant models were between 156.0–157.4°, while those of previous generation models between 154.5–165.5°. At 30° of flexion, sulcus angles of recent models also lie within 145.7–148.6°, but those of previous models are between 149.5–152.0°. All three manufacturers deepened their trochlear profile at 30° of flexion in recent models compared to earlier designs. Sulcus angles converge towards anatomic values but still exceed radiologic signs of dysplasia by 2–5°. Recent TKA designs have more anatomic trochlear geometries than earlier TKA models by the same manufacturers, but trochlear compartments still exceed radiologic signs of trochlear dysplasia by 2° to 5°. The hypothesis that recent TKA models display no signs of trochlear dysplasia is therefore refuted. Surgeons should be aware of design limitations to optimize choice of implant and extensor mechanisms alignment. Level of evidence: IV geometric implant analysis


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 321 - 321
1 May 2010
boroujeni FI Merican A Dandachli W Amis A Cobb J
Full Access

Introduction: Patellofemoral complications are one of the major causes for revision surgery. In the prosthetic knee, the main determinant within the patellofemoral mechanism is said to be the design of the groove (Kulkarni et al., 2000). Other studies characterising the native trochlear groove used indirect methods such as photography, plain radiographs and measurements using probes and micrometer. The aim of this study was to define the 3-dimensional geometry of the femoral trochlear groove. We used CT scans to describe the geometry of the trochlear groove and its relationship to the tibiofemoral joint in terms of angles and distances. Materials and Methods: CT scans of 45 normal femurs were analysed using custom designed imaging software. This enabled us to convert the scans to 3D and measure distances and angles. The flexion axis of the tibiofemoral joint was found to be a line connecting the centres of the spheres fitted to posterior femoral condyles. These two centres and the femoral head centre form a frame of reference for reproducible femoral alignment. The trochlear geometry was defined by fitting circles to cross sectional images and spheres to 3D surfaces. Axes were constructed through these centres. The deepest points on the trochlear groove were identified using quad images and Hounsfield units. After aligning the femur using different axes, the location of the groove was examined in relation to the mid plane between the centres of flexion of the condyles. Results: The deepest points on the trochlear groove can be fitted to a circle with a radius of 23mm (S.D. 4mm) and an R.M.S error of 0.3mm. The groove is positioned laterally (especially in its mid portion) in relation to the femoral mechanical and anatomical axes. It was also lateral to the perpendicular bisect of the transcondylar axes. After aligning the anatomical axis in screen the trochlear groove can be described on average to be linear with less than 2 mm medial/lateral translation. In the sagital view, the centre of the circle is offset by 21mm (S.D.3mm) at an angle of 67° (S.D. 7°) from a line connecting the midpoint between the centres of the femoral condyles and the femoral head centre. On either end of this line, the articular surface of the trochlea can be fitted to spheres of radius 30mm (S.D. 6mm) laterally and 27mm (S.D. 5mm) medially, with an rms of 0.4mm. Discussion: The location and configuration of the inter-condylar groove of the distal femur is clinically significant in the mechanics and pathomechanics of the patellofemoral articulation. This investigation has allowed us to characterise the trochlear groove. This can be of use in planning and performing joint reconstruction and have implications for the design of patello-femoral replacements and the rules governing their position


The protective effect of lipped polyethylene uncemented acetabular liners against revision THA for instability has been reported. However, the effect of lip size has not been explored, nor has the effect on revision THA for loosening. We aimed to determine if uncemented acetabular liner geometry, and lip size, influences the risk of revision THA for instability or loosening. 202511 primary THAs with uncemented polyethylene acetabular components were identified from the NJR dataset (2003 – 2017). The effect of acetabular liner geometry and lip size on the risk of revision THA for instability or loosening was investigated using binomial regression and competing risks survival analyses (competing risks were revision for other causes or death) adjusting for age, gender, ASA grade, diagnosis, side, institution type, surgeon grade, surgical approach, head size and polyethylene crosslinking. The distribution of acetabular liners was: neutral – 39.4%, offset neutral – 0.9%, 10-degree – 34.5%, 15-degree – 21.6%, 20-degree – 0.8%, offset reorientating – 2.82%. There were 690 (0.34%) revision THAs for instability and 604 (0.3%) for loosening. Significant subhazard risk ratios were found in revision THA for instability with 10-degree (0.63), 15-degree (0.48) and offset reorientating (1.6) liners, compared to neutral liners. There was no association found between liner geometry and risk of revision THA for loosening. This Registry based study confirms a significantly lower risk of revision THA for instability when a lipped liner is used, compared to neutral liners, and a higher risk with the use of offset reorientating liners. Furthermore, 15degree liners seem to have a lower risk than 10degree liners. We did not find an association between acetabular liner geometry and revision THA for loosening. 10- and 15-degree lipped polyethylene liners seem to offer a lower revision risk over neutral liners, at least at medium term followup. Further studies are required to confirm if this benefit continues into the long-term