Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

INFLUENCE OF GEOMETRY AND MATERIAL PROPERTIES IN ACHILLES TENDON RUPTURES

8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Abstract

Summary Statement

Subject specific FE models of human Achilles tendon were developed and optimum material properties were found. Stress concentration occurred at the midsection but dependent on stiffening and thinning of tendon, indicating that they are two major factors for tendon rupture.

Introduction

Achilles tendon injuries are common, occurring about 250,000 per year in the US alone, yet the mechanisms of tendinopathy and rupture remain unknown. Most Achilles tendon ruptures occur at 2 to 6 cm above the insertion to the calcaneus bone. Previous angiographic studies have suggested that there is an avascular area in this region. However, it is not understood why that region receives poor blood supply and prone to rupture. The aim of this study is to investigate influence of geometry and material properties on Achilles tendon rupture with mechanical experiment and corresponding subject-specific finite element (FE) analysis.

Patients & Methods

Mechanical experiment was performed on 10 fresh human Achilles tendons. High frequency ultrasound images were used to measure cross sectional areas at the midsection of the tendon. Cyclic testing was performed to measure mechanical properties and failure loads. Subject-specific FE models of these tendons were generated with Free Form Deformation (FFD) technique. FE mechanical simulations that mimic the experimental cyclic loading were performed on these subject specific models. Tendon material properties were described as transversely isotropic hyperelastic and the optimum material parameters for the human Achilles tendon were obtained. Linear portion of the cyclic loading data was used as boundary conditions. Measured strains from the experiment were compared with predicted strains from the FE analysis. This process was repeated until optimum parameters were found. The influence of geometry and material properties on the Achilles tendon rupture was then investigated– first with subject-specific geometry with average material properties and then with subject-specific material properties with average geometry.

Results

Our results indicate that a significant variation exist in the geometry and material properties in human Achilles tendons. Stress concentrations occurred at the midsection of the tendon, supporting previous studies that reported tendon rupture at the region. In particular the thinning of midsection in geometry is highly correlated with the collagen uncrimpping rate in material properties where thinner midsection leads to faster uncrimpping of collagen fibres. Variations in geometry led to shifts in the location of stress concentration within the midsection while variations in material property led the change in the magnitude of stress concentration.

Discussion/Conclusion

Our results indicate that Achilles tendon rupture is highly dependent on subject-specific geometry and material properties. In particular the mid section is the location of stress concentration but depending on the geometrical shape, multiple stress concentrations occur, making the tendon more prone to rupture while the material properties influenced the magnitude of stress concentration. Our results indicate stiffening and thinning of tendon may lead to higher risk for tendon rupture.