header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

EFFECTS OF AUGMENTED AND LATERALIZED GLENOID BASEPLATE GEOMETRY ON MICROMOTION IN THE PRESENCE OF E2 EROSION

The Canadian Orthopaedic Association (COA) and Canadian Orthopaedic Research Society (CORS) Annual General Meeting, Quebec City, Quebec, Canada, 8–11 June 2022. Part 1 of 2.



Abstract

Patients receiving reverse total shoulder arthroplasty (RTSA) often have osseous erosions because of glenohumeral arthritis, leading to increased surgical complexity. Glenoid implant fixation is a primary predictor of the success of RTSA and affects micromotion at the bone-implant interface. Augmented implants which incorporate specific geometry to address superior erosion are currently available, but the clinical outcomes of these implants are still considered short-term. The objective of this study was to investigate micromotion at the glenoid-baseplate interface for a standard, 3 mm and 6 mm lateralized baseplates, half-wedge, and full-wedge baseplates. It was hypothesized that the mechanism of load distribution from the baseplate to the glenoid will differ between implants, and these varying mechanisms will affect overall baseplate micromotion.

Clinical CT scans of seven shoulders (mean age 69 years, 10°-19° glenoid inclinations) that were classified as having E2-type glenoid erosions were used to generate 3D scapula models using MIMICS image processing software (Materialise, Belgium) with a 0.75 mm mesh size. Each scapula was then repeatedly virtually reconstructed with the five implant types (standard,3mm,6mm lateralized, and half/full wedge; Fig.1) positioned in neutral version and inclination with full backside contact. The reconstructed scapulae were then imported into ABAQUS (SIMULIA, U.S.) finite element software and loads were applied simulating 15°,30°,45°,60°,75°, and 90° of abduction based on published instrumented in-vivo implant data. The micromotion normal and tangential to the bone surface, and effective load transfer area were recorded for each implant and abduction angle. A repeated measures ANOVA was used to perform statistical analysis.

Maximum normal micromotion was found to be significantly less when using the standard baseplate (5±4 μm), as opposed to the full-wedge (16±7 μm, p=0.004), 3 mm lateralized (10±6 μm, p=0.017), and 6 mm lateralized (16±8 μm, p=0.007) baseplates (Fig.2). The half-wedge baseplate (11±7 μm) also produced significantly less micromotion than the full-wedge (p=0.003), and the 3 mm lateralized produced less micromotion than the full wedge (p=0.026) and 6 mm lateralized (p=0.003). Similarly, maximum tangential micromotion was found to be significantly less when using the standard baseplate (7±4 μm), as opposed to the half-wedge (12±5 μm, p=0.014), 3 mm lateralized (10±5 μm, p=0.003), and 6 mm lateralized (13±6 μm, p=0.003) baseplates (Fig.2). The full wedge (11±3 μm), half-wedge, and 3 mm lateralized baseplate also produced significantly less micromotion than the 6 mm lateralized (p=0.027, p=012, p=0.02, respectively). Both normal and tangential micromotion were highest at the 30° and 45° abduction angles (Fig.2). The effective load transfer area (ELTA) was lowest for the full wedge, followed by the half wedge, 6mm, 3mm, and standard baseplates (Fig.3) and increased with abduction angle.

Glenoid baseplates with reduced lateralization and flat backside geometries resulted in the best outcomes with regards to normal and tangential micromotion. However, these types of implants are not always feasible due to the required amount of bone removal, and medialization of the bone-implant interface. Future work should study the acceptable levels of bone removal for patients with E-type glenoid erosion and the corresponding best implant selections for such cases.

For any figures or tables, please contact the authors directly.


Email: