Advertisement for orthosearch.org.uk
Results 1 - 20 of 66
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 55 - 55
11 Apr 2023
Raina D Markeviciute V Arvidsson L Törnquist E Stravinskas M Kok J Jacobson I Liu Y Tengattini A Sezgin E Vater C Zwingenberger S Isaksson H Tägil M Tarasevicius S Lidgren L
Full Access

Majority of osteoporosis related fractures are treated surgically using metallic fixation devices. Anchorage of fixation devices is sometimes challenging due to poor osteoporotic bone quality that can lead to failure of the fracture fixation. Using a rat osteoporosis model, we employed neutron tomography and histology to study the biological effects of implant augmentation using an isothermally setting calcium sulphate/hydroxyapatite (CaS/HA) biomaterial with synthetic HA particles as recruiting moiety for systemically administered bisphosphonates. Using an osteoporotic sawbones model, we then provide a standardized method for the delivery of the CaS/HA biomaterial at the bone-implant interface for improved mechanical anchorage of a lag-screw commonly used for hip fracture fixation. As a proof-of-concept, the method was then verified in donated femoral heads and in patients with osteoporosis undergoing hip fracture fixation. We show that placing HA particles around a stainless-steel screw in-vivo, systemically administered bisphosphonates could be targeted towards the implant, yielding significantly higher peri-implant bone formation compared to un-augmented controls. In the sawbones model, CaS/HA based lag-screw augmentation led to significant increase (up to 4 times) in peak extraction force with CaS/HA performing at par with PMMA. Micro-CT imaging of the CaS/HA augmented lag-screws in cadaver femoral heads verified that the entire length of the lag-screw threads and the surrounding bone was covered with the CaS/HA material. X-ray images from fracture fixation surgery indicated that the CaS/HA material could be applied at the lag-screw-bone interface without exerting any additional pressure or risk of venous vascular leakage.: We present a new method for augmentation of lag-screws in fragile bone. It is envisaged that this methodcould potentially reduce the risk of fracture fixation failure especially when HA seeking “bone active” drugs are used systemically


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 58 - 58
17 Nov 2023
Huang D Buchanan F Clarke S
Full Access

Abstract. Objectives. Osteoporotic fractures tend to be more challenging than fractures in healthy bone and the efficacy of metal screw fixation decreases with decreasing bone mineral density making it more difficult for such screws to gain purchase. This leads to increased complication rates such as malunion, non-union and implant failure (1). Bioresorbable polymer devices have seen clinical success in fracture fixation and are a promising alternative for metallic devices but are rarely used in the osteoporotic population. To address this, we are developing a system that may allow osteoporotic patients to avail of bioresorbable devices (2) but it is important to establish if patients have any reservations about having a plastic resorbable device instead of a metal one. Therefore the aim of this study was to explore the acceptability of bioresorbable fracture fixation devices to people with osteoporosis. Methods. A cross sectional descriptive study was conducted in a UK wide population using convenience sampling. An online survey comprising nine survey questions and nine demographic questions was developed in Microsoft Teams and tested for face validity in a small pilot study (n=6). Following amendments and ethical approval, the survey was distributed by the Royal Osteoporosis Society on their website and social media platforms. People were invited to take part if they lived in the UK, were over 18 years old and had been diagnosed with osteoporosis. The survey was open for three weeks in May 2023. Responses were analysed using descriptive statistics. Results. There were 112 responses. Eight participants had not been diagnosed with osteoporosis and therefore did not meet the study criteria. Of the remaining 104, 102 were female and 2 were male and 102 were white (2 chose not to disclose their ethnicity). The majority of participants were aged 55–64 (34.6%) or 65–74 (37.5%), were college/university educated (38.5%) and had previously sustained a fragility fracture (52.9%). Only 3.9% of participants had heard of bioresorbable fracture fixation devices compared to 62.5% for metal devices. Most people were unsure if they would trust one type of device over the other (58.7%) and would ask for more information if their surgeon were to suggest using a bioresorbable device to fix their fracture (61.5%). The most commonly reported concerns were about device safety and efficacy: toxicity of the degradation products and the device breaking down too early before the fracture had healed. Two participants cited environmental concerns about increased use of plastics as a reason they would decline such a device. Conclusions. As expected, participants had little to no knowledge of bioresorbable polymer fixation devices. In general, they were willing to be guided by their surgeon but would require supporting information on the safety and efficacy of their long-term use. The results of this study show that it will be important to have relevant and understandable information to give patients when recommending these devices as treatments to ensure and support a shared-decision approach to patient care. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 122 - 122
4 Apr 2023
Schwarzenberg P Colding-Rasmussen T Hutchinson D Mischler D Horstmann P Petersen M Malkock M Wong C Varga P
Full Access

The objective of this study was to investigate how a new customizable light-curable osteosynthesis method (AdFix) compared to traditional metal hardware when loaded in torsion in an ovine phalanx model. Twenty-one ovine proximal phalanges were given a 3mm transverse osteotomy and four 1.5mm cortex screws were inserted bicortically on either side of the gap. The light-curable polymer composite was then applied using the method developed by Hutchinson [1] to create osteosyntheses in two groups, having either a narrow (6mm, N=9) or a wide (10mm, N=9) fixation patch. A final group (N=3) was fixated with conventional metal plates. The constructs were loaded in torsion at a rate of 6°/second until failure or 45° of rotation was reached. Torque and angular displacement were measured, torsional stiffness was calculated as the slope of the Torque-Displacement curve, and maximum torque was queried for each specimen. The torsional stiffnesses of the narrow, wide, and metal plate constructs were 39.1 ± 6.2, 54.4 ± 6.3, and 16.2 ± 3.0 Nmm/° respectively. All groups were statistically different from each other (p<0.001). The maximum torques of the narrow, wide, and metal plate constructs were 424 ± 72, 600 ± 120, and 579 ± 20 Nmm respectively. The narrow constructs were statistically different from the other two (p<0.05), while the wide and metal constructs were not statistically different from each other (p=0.76). This work demonstrated that the torsional performance of the novel solution is comparable to metal fixators. As a measure of the functional range, the torsional stiffness in the AdhFix exceeded that of the metal plate. Furthermore, the wide patches were able to sustain a similar maximum toque as the metal plates. These results suggest AdhFix to be a viable, customizable alternative to metal implants for fracture fixation in the hand


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 96 - 96
17 Apr 2023
Gupta P Galhoum A Aksar M Nandhara G
Full Access

Ankle fractures are among the most common types of fractures. If surgery is not performed within 12 to 24 hours, ankle swelling is likely to develop and delay the operative fixation. This leads to patients staying longer in the ward waiting and increased hospital occupancy. This prolonged stay has significant financial implication as well as it is frustrating for both patients and health care professionals. The aim was to formulate a pathway for the ankle fracture patients coming to the emergency department, outpatients and planned for operative intervention. To identify whether pre-operative hospital admissions of stable ankle fracture patients are reduced with the implementation of the pathway. We formulated an ankle fracture fixation pathway, which was approved for use in December 2020. A retrospective analysis of 6 months hospital admissions of ankle fracture patients in the period between January to June 2020. The duration from admission to the actual surgery was collected to review if some admissions could have been avoided and patients brought directly on the surgery day. A total of 23 patients were included. Mean age was 60.5 years and SD was 17years. 94% of patients were females. 10 patients were appropriately discharged.7 Patients were appropriately admitted. 6 Patients were unnecessarily admitted. These 6 patients were admitted on presentation to ED. Retrospective analysis of this audit showed that this cohort of patients met the safe discharge criteria and could have been discharged. Duration of unnecessary stay ranged from 1 to 11 days (21 days in total). Total saving could have been £6300. Standards were met in 74% of cases. Preoperative hospital admission could be reduced with the proposed pathway. It is a valuable tool to be used and should be implemented to reduce unnecessary hospital admissions


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 41 - 41
2 Jan 2024
Singh S Dhar S Kale S
Full Access

The management of comminuted metaphyseal fractures is a technical challenge and satisfactory outcomes of such fixations often remain elusive. The small articular fragments and bone loss often make it difficult for standard fixation implants for proper fixation. We developed a novel technique to achieve anatomical reduction in multiple cases of comminuted metaphyseal fractures at different sites by employing the cantilever mechanism with the help of multiple thin Kirschner wires augmented by standard fixation implants. We performed a retrospective study of 10 patients with different metaphyseal fractures complicated by comminution and loss of bone stock. All patients were treated with the help of cantilever mechanism using multiple Kirschner wires augmented by compression plates. All the patients were operated by the same surgeon between November 2020 to March 2021 and followed up till March 2023. Surgical outcomes were evaluated according to the clinical and radiological criteria. A total of 10 patients were included in the study. Since we only included patients with highly unstable and comminuted fractures which were difficult to fix with traditional methods, the number of patients in the study were less. All 10 patients showed satisfactory clinical and radiological union at the end of the study with good range of motion. One of the patient in the study had post-operative wound complication which was managed conservatively with regular dressings and oral antibiotics. Comminuted metaphyseal fractures might differ in pattern and presentation with every patient and there can be no standard treatment for all. The cantilever technique of fracture fixation is based on the principle of cantilever mechanism used in bridges and helps achieve good anatomical reduction and fixation. It provides a decent alternative when standard modes of fixation don't give desired result owing to comminuted nature of fractures and deficiency of bone stock


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 96 - 96
4 Apr 2023
Pastor T Kastner P Souleiman F Gehweiler D Link B Beeres F Babst R Gueorguiev B Knobe M
Full Access

Helical plates are preferably used for proximal humeral shaft fracture fixation and potentially avoid radial nerve irritation as compared to straight plates. Aims:(1) to investigate the safety of applying different long plate designs (straight, 45°-, 90°-helical and ALPS) in MIPO-technique to the humerus. (2) to assess and compare their distances to adjacent anatomical structures at risk. MIPO was performed in 16 human cadaveric humeri using either a straight plate (group1), a 45°-helical (group2), a 90°-helical (group3) or an ALPS (group4). Using CT-angiography, distances between brachial arteries and plates were evaluated. Following, all specimens were dissected, and distances to the axillary, radial and musculocutaneous nerve were evaluated. None of the specimens demonstrated injuries of the anatomical structures at risk after MIPO with all investigated plate designs. Closest overall distance (mm(range)) between each plate and the radial nerve was 1(1-3) in group1, 7(2-11) in group2, 14(7-25) in group3 and 6(3-8) in group4. It was significantly longer in group3 and significantly shorter in group1 as compared to all other groups, p<0.001. Closest overall distance (mm(range)) between each plate and the musculocutaneous nerve was 16(8-28) in group1, 11(7-18) in group2, 3(2-4) in group3 and 6(3-8) in group4. It was significantly longer in group1 and significantly shorter in group3 as compared to all other groups, p<0.001. Closest overall distance (mm(range)) between each plate and the brachial artery was 21(18-23) in group1, 7(6-7) in group2, 4(3-5) in group3 and 7(6-7) in group4. It was significantly longer in group1 and significantly shorter in group3 as compared to all other groups, p<0.021. MIPO with 45°- and 90°-helical plates as well as ALPS is safely feasible and showed a significant greater distance to the radial nerve compared to straight plates. However, distances remain low, and attention must be paid to the musculocutaneous nerve and the brachial artery when MIPO is used with ALPS, 45°- and 90°-helical implants. Anterior parts of the deltoid insertion will be detached using 90°-helical and ALPS implants in MIPO-technique


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 83 - 83
11 Apr 2023
Khojaly R Rowan F Nagle M Shahab M Shah V Dollard M Ahmed A Taylor C Cleary M Niocaill R
Full Access

Is Non-Weight-Bearing Necessary? (INWN) is a pragmatic multicentre randomised controlled trial comparing immediate protected weight-bearing (IWB) with non-weight-bearing cast immobilisation (NWB) following ankle fracture fixation (ORIF). This trial compares; functional outcomes, complication rates and performs an economic analysis to estimate cost-utility. IWB within 24hrs was compared to NWB, following ORIF of all types of unstable ankle fractures. Skeletally immature patients and tibial plafond fractures were excluded. Functional outcomes were assessed by the Olerud-Molander Ankle Score (OMAS) and RAND-36 Item Short Form Survey (SF-36) taken at regular follow-up intervals up to one year. A cost-utility analysis via decision tree modelling was performed to derive an incremental cost effectiveness ratio (ICER). A standard gamble health state valuation model utilising SF-36 scores was used to calculate Quality Adjusted Life Years (QALYs) for each arm. We recruited 160 patients (80 per arm), aged 15 to 94 years (M = 45.5), 54% female. Complication rates were similar in both groups. IWB demonstrated a consistently higher OMAS score, with significant values at 6 weeks (MD=10.4, p=0.005) and 3 months (MD 12.0, p=0.003). Standard gamble utility values demonstrated consistently higher values (a score of 1 equals perfect health) with IWB, significant at 3 months (Ẋ = 0.75 [IWB] / 0.69 [NWB], p=0.018). Cost-utility analysis demonstrated NWB is €798.02 more expensive and results in 0.04 fewer QALYs over 1 year. This results in an ICER of −€21,682.42/QALY. This negative ICER indicates cost savings of €21,682.42 for every QALY (25 patients = 1 QALY gain) gained implementing an IWB regime. IWB demonstrates a superior functional outcome, greater cost savings and similar complication rates, compared to NWB following ankle fracture fixation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 35 - 35
1 Dec 2020
Scattergood SD Berry AL Flannery O Fletcher JWA Mitchell SR
Full Access

Intracapsular neck of femur fractures may be treated with fixation or arthroplasty, depending on fracture characteristics and patient factors. Two common methods of fixation are the sliding hip screw, with or without a de-rotation screw, and cannulated screws. Each has its merits, and to date there is controversy around which method is superior, with either method thought to risk avascular necrosis of the femoral head (AVN) rates in the region of 10–20%. Fixation with cannulated screws may be performed in various ways, with current paucity of evidence to show an optimum technique. There are a multitude of factors which are likely to affect patient outcomes: technique, screw configuration, fracture characteristics and patient factors. We present a retrospective case series analysis of 65 patients who underwent cannulated screw fixation of a hip fracture. Electronic operative records were searched from July 2014 until July 2019 for all patients with a neck of femur fracture fixed with cannulated screws: 68 were found. Three patients were excluded on the basis of them having a pathological fracture secondary to malignancy, cases were followed up for 2 years post-operatively. Electronic patient records and X-rays were reviewed for all included patients. All X-rays were examined by each team member twice, with a time interval of two weeks to improve inter-observer reliability. 65 patients were included with 2:1 female to male ratio and average age of 72 years. 36 patients sustained displaced fractures and 29 undisplaced. Ten patients sustained a high-energy injury, none of which developed AVN. Average time to surgery was 40 hours and 57 patients mobilised on day one post-operatively. All cases used either 7 or 7.3mm partially threaded screws in the following configurations: 2 in triangle apex superior, 39 triangle apex inferior, 22 rhomboid and 2 other, with 9 cases using washers. All reductions were performed closed. Five (8%) of our patients were lost to follow-up as they moved out of area, 48 (74%) had no surgical complications, seven (11%) had mild complications, three (5%) moderate and two (3%) developed AVN. Both of these sustained displaced fractures with low mechanism of injury, were female, ASA 2 and both ex-smokers. One received three screws in apex inferior configuration and one rhomboid, neither fixed with washers. Our AVN rate following intracapsular hip fracture fixation with cannulated screws is much lower than widely accepted. This study is under-powered to comment on factors which may contribute to the development of AVN. However, we can confidently say that our practice has led to low rates of AVN. This may be due to our method of fixation; we use three screws in an apex inferior triangle or four screws in a rhomboid, our consultant-led operations, closed reduction of all fractures, or our operative technique. We pass a short thread cannulated screw across the least comminuted aspect of the fracture first in order to achieve compression, followed by two or three more screws (depending on individual anatomy) to form a stable construct. Our series shows that fixation of intracapsular hip fractures with cannulated screws as we have outlined remains an excellent option. Patients retain their native hip, have a low rate of AVN, and avoid the risks of open reduction


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 30 - 30
1 Mar 2013
Qureshi A Ahmed I Han N Parsons A Pearson R Scotchford C Rudd C Scammell B
Full Access

Background. Bioresorbable materials offer the potential of developing fracture fixation plates with similar properties to bone thereby minimising the “stress shielding” associated with metal plates and obviating the need for implant removal. Phosphate glass fibre reinforced (PGF)-polylactic acid (PLA) composites are bioresorbable and have demonstrated sufficient retention of mechanical properties to enable load bearing applications. Aim. To determine the potential in vivo “stress shielding” effects of a novel PGF reinforced PLA composite plate in an animal model. Methods. Twenty five NZW rabbits underwent application of the composite plate to the intact right tibia. They were divided into 5 groups corresponding to the time points from surgery to sacrifice −2, 6, 12, 26 and 52 weeks. Outcomes included radiographs, NanoCT imaging, histological assessment and mechanical testing of the retrieved plated tibia and opposite control tibia. Results. Plate integrity was retained up to 26 weeks on radiographs and scanning electron microscopy (SEM). The mechanical properties of the plated bones were equivalent or greater than the control bones at each time point although the relative improvement in mechanical properties diminished with time. Nano CT imaging and SEM revealed bone remodelling with cortical thinning beneath the composite plate which progressed as the duration of implantation increased. Discussion. The bone-composite plate construct retained its mechanical properties compared to the control bone despite thinning of the cortex beneath the plate. More importantly, this work suggests that fracture fixation systems with equivalent mechanical properties to bone may still induce a “stress shielding” response


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 77 - 77
1 Jul 2014
Kojima K Lenz M Nicolino T Hofmann G Richards R Gueorguiev B
Full Access

Summary Statement. Tibia plateau split fracture fixation with two cancellous screws is particularly suitable for non-osteoporotic bone, whereas four cortical lag screws provide a comparable compression in both non-osteoporotic and osteoporotic bone. Angle-stable locking plates maintain the preliminary compression applied by a reduction clamp. Introduction. Interfragmentary compression in tibia plateau split fracture fixation is necessary to maintain anatomical reduction and avoid post-traumatic widening of the plateau. However, its amount depends on the applied fixation technique. The aim of the current study was to quantify the interfragmentary compression generated by a reduction clamp with subsequent angle-stable locking plate fixation in an osteoporotic and non-osteoporotic synthetic human bone model in comparison to cancellous or cortical lag screw fixation. Methods. Adult synthetic human tibiae with hard or soft cancellous bone were osteotomised at the lateral tibia plateau creating a split fracture (AO type 41-B1) and fixed with either two 6.5 mm cancellous, four 3.5 mm cortical lag screws or 3.5 mm LCP proximal lateral tibia plate, preliminary compressed by a reduction clamp (n = 5 per group). Interfragmentary compression was measured by a pressure sensor film after instrumentation. One-way analysis of variance (ANOVA) with Bonferroni post hoc correction was performed for statistical analysis (p < 0.05). Results. Applying a reduction clamp, interfragmentary compression was 0.6 MPa ± 0.1 in non-osteoporotic and osteoporotic bone. The locking plate was able to maintain the compression (0.5 MPa ± 0.1) in non-osteoporotic and osteoporotic bone, but it was significantly lower compared to four cortical lag screws (non-osteoporotic p = 0.01; osteoporotic p = 0.03). Comparing four 3.5 mm cortical lag screws, compression was not significantly different between the non-osteoporotic (1.7 MPa ± 0.7) and osteoporotic bone (1.4 MPa ± 0.5). Two 6.5 mm cancellous lag screws achieved significantly higher compression in non-osteoporotic (2.1 MPa ± 0.6) compared to osteoporotic (0.8 MPa ± 0.2, p = 0.01) bone. Conclusion. Preliminary compression applied by a reduction clamp was maintained by angle-stable locking plates. The two 6.5 mm cancellous screw technique would especially be appropriate for young human non-osteoporotic bone, whereas the four 3.5 mm cortical screw configuration could also be applied in osteoporotic bone


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 74 - 74
1 Aug 2012
Mak J Moazen M Jones A Jin Z Tsirdis E Wilcox R
Full Access

Periprosthetic femoral fractures can occur as a complication of total hip arthroplasty and are often challenging to treat as the mechanical scenario is influenced by the presence of the metal prosthesis within the bone. This research focuses on finding the optimum fixation for transverse, Vancouver type B1 periprosthetic fractures, stabilised using locking plates and secured using screws. The aim of this study was to experimentally validate a computer model of a human femur, develop that model to represent a periprosthetic femoral fracture fixation and show how the model could be used to indicate differences between plating techniques. In the first development stage, both a laboratory model and a finite element model were developed to evaluate the mechanical behaviour of an intact composite femur under axial loading. Axial strains were recorded along the medial length of the femur in both cases and compared to provide validation for the computational model predications. The computational intact femur model was then modified to include a cemented total hip replacement, and further adapted to include a periprosthetic fracture stabilised using a locking plate, with unicortical screws above, and bicortical screws below the transverse fracture. For the intact femur case, the experimental and computational strain patterns correlated well with an average difference of 16%. Following the inclusion of the stem, there was a reduction in the strain in the region of the prosthesis reducing by an average of 45%. There was also a large increase in bulk stiffness with the introduction of the prosthesis. When the fracture and plate fixation were included, there was little difference in the proximal strain where the stem dominated, and the strains in the distal region were found to be highly sensitive to the distribution of the screws. The results of this study indicate that screw configuration is an important factor in periprosthetic fracture fixation. A laboratory model of the periprosthetic facture case is now under development to further validate the computational models and the two approaches will then be used to determine optimum fixation methods for a range of clinical scenarios


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 10 - 10
14 Nov 2024
Zderic I Kraus M Rossenberg LV Puls L Pastor T Gueorguiev B Richards G Pape HC Pastor T
Full Access

Introduction

The main postoperative complications in fixation of ulna shaft fractures are non-union and implant irritation using currently recommended 3.5-mm locking compression plates. An alternative approach using a combination of two smaller plates in orthogonal configuration has been proposed. The aim of this study was to compare the biomechanical properties of a single 3.5-mm locking compression plate versus double plating using one 2.5-mm and one 2.0-mm mandible plate in a human ulna shaft fracture model.

Method

Eight pairs human ulnar specimens with a standardized 10-mm fracture gap were pairwise assigned for instrumentation with either a single 3.5-mm plate placed posteriorly, or for double plating using a 2.5-mm and a 2.0-mm mandible plate placed posteriorly under the flexor muscles and laterally under the extensor muscles. All constructs were initially non-destructively biomechanically tested in axial compression, torsion, and bending, which was followed by cyclic torsional loading to failure. Interfragmentary movements were monitored by means of optical motion tracking.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 133 - 133
1 Nov 2018
Mercer D
Full Access

Advancements in treating complications of operatively treated distal radius fractures. We will review tips and tricks to avoid complications associated with operative fixation of these complicated injuries. We will cover treatment of the distal radioulnar joint, associated distal ulna fracture, complications of malreduction and implant prominence. During this session, we will review the latest techniques for treating these complex distal radius fractures and how to avoid associated complications.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 232 - 232
1 Jul 2014
Ouellette E Elliott W Latta L Milne E Kaimrajh D Lowe J Makowski A Herndon E Kam C Sawardeker P
Full Access

Summary. For injuries to the lower leg or forearm, supplemental support from soft tissue compression (STC) with a splint or brace-like system and combined with external fixation could be done effectively and quickly with a minimal of facilities in the field. Introduction. Soft tissue compression (STC) in functional braces has been shown to provide rigidity and stability for most closed fractures, selected open fractures and can supplement some other forms of fracture fixation. However, soft tissue injuries are compromised in war injuries. This study was designed to evaluate if STC can provide adequate rigidity and stability either with, or without other forms of fixation techniques of simple fractures or bone defects after standardised soft tissue defects. The load was applied either axially or in bending as the bending configuration is more like conditions when positioned on a stretcher in the field. Methods. A simple, oblique fracture was created in 23 cadaveric femurs, 23 tibiae and fibulae, 22 humeri and 22 radii and ulnae of intact limb segments. The weight of each intact limb segment was measured. Cyclic axial loads (12 – 120N) were applied for each progressive condition: intact limb, mid shaft osteotomy, a lateral 1/4 circumferential soft tissue defect, 1/3 circumferential defect and finally, 3 cm bone defect. Limbs were randomly assigned to be stabilised be either plate and screw (PS), intramedullary rod (IR) or external fixation (EF). Testing with and without STC in a brace was performed after each condition. In an additional 36 forearms, bending rigidity was measured using a modular fracture brace with external fixation. The bone and the soft tissue weighed separately and the ratio of soft tissue to bone was calculated. ANOVA multi-variant analysis corrected for multiple comparisons was used to compare the axial rigidity between the different conditions tested. Results. There was no significant difference in axial rigidity for humerus or femoral shaft fractures treated by any of the methods related to the degree of soft tissue damage. Femurs, tibias and humeri with a 3 cm bone defect were best stabilised with IR. Forearms with a 3 cm bone defect were best stabilised with PS. Progressive increase in soft tissue defects did create progressive loss in rigidity in forearms and legs, but the most dramatic loss occurred with the bone defect and ST defect. The rigidity of IR and EF in legs decreased over 50% with bone defect, and about 20% of that was restored with STC. The rigidity of IR and EF in forearms decreased almost 79%, and about 21% of that was restored with STC. The increase in resistance to bending in the forearm was most significantly improved by STC. Discussion/Conclusions. Invasive types of surgical intervention provide the best rigidity to fractures, regardless of the presence of or size of a soft tissue defect. In general, use of PS and IR and application of conventional types of braces to achieve STC is not practical in the field. EF, however, can be applied quickly and easily with a minimal of facilities in the field and can be applied in such a way that no foreign bodies end up in the contaminated wound. For injuries to the leg or forearm, supplemental support from STC with a splint or brace-like system could be effective


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 70 - 70
1 Mar 2021
Scattergood S Flannery O Berry A Fletcher J Mitchell S
Full Access

Abstract

Objectives

The use of cannulated screws for femoral neck fractures is often limited by concerns of avascular necrosis (AVN) occurring, historically seen in 10–20% of fixed intracapsular fractures. The aim of this study was to investigate the rate of AVN with current surgical techniques within our unit.

Methods

A single centre retrospective review was performed. Operative records between 1st July 2014 and 31st May 2019 were manually searched for patients with an intracapsular neck of femur fracture fixed with cannulated screws, with minimum one year follow up. Patient records and radiographs were reviewed for clinical and radiographic diagnoses of AVN and/or non-union. Fracture pattern and displacement, screw configuration and reduction techniques were recorded, with radiographs independently analysed by five orthopaedic surgeons.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 4 - 4
1 Jan 2017
Stoffel K Zderic I Sommer C Eberli U Müller D Oswald M Gueorguiev B
Full Access

Three Cannulated Screws (3CS), Dynamic Hip Screw (DHS) with antirotation screw (DHS–Screw) or with a Blade (DHS–Blade) are the gold standards for fixation of unstable femoral neck fractures. Compared to 3CS, both DHS systems require larger skin incision with more extensive soft tissue dissection while providing the benefit of superior stability. The newly designed Femoral Neck System (FNS) for dynamic fixation combines the advantages of angular stability with a less invasive surgical technique. The aim of this study is to evaluate the biomechanical performance of FNS in comparison to established methods for fixation of the femoral neck in a human cadaveric model.

Twenty pairs of fresh–frozen human cadaveric femora were instrumented with either DHS–Screw, DHS–Blade, 3CS or FNS. A reduced unstable femoral neck fracture 70° Pauwels III, AO/OTA31–B2.3 was simulated with 30° distal and 15° posterior wedges. Cyclic axial loading was applied in 16° adduction, starting at 500N and with progressive peak force increase of 0.1N/cycle until construct failure. Relative interfragmentary movements were evaluated with motion tracking.

Highest axial stiffness was observed for FNS (748.9 ± 66.8 N/mm), followed by DHS–Screw (688.8 ± 44.2 N/mm), DHS–Blade (629.1 ± 31.4 N/mm) and 3CS (584.1 ± 47.2 N/mm) with no statistical significances between the implant constructs. Cycles until 15 mm leg shortening were comparable for DHS–Screw (20542 ± 2488), DHS–Blade (19161 ± 1264) and FNS (17372 ± 947), and significantly higher than 3CS (7293 ± 850), p<0.001. Similarly, cycles until 15 mm femoral neck shortening were comparable between DHS–Screw (20846 ± 2446), DHS–Blade (18974 ± 1344) and FNS (18171 ± 818), and significantly higher than 3CS (8039 ± 838), p<0.001.

From a biomechanical point of view, the Femoral Neck System is a valid alternative to treat unstable femoral neck fractures, representing the advantages of a minimal invasive angle–stable implant for dynamic fixation with comparable stability to the two DHS systems with blade or screw, and superior to Three Cannulated Screws.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1257 - 1263
1 Sep 2006
Richter M Droste P Goesling T Zech S Krettek C

Different calcaneal plates with locked screws were compared in an experimental model of a calcaneal fracture. Four plate models were tested, three with uniaxially-locked screws (Synthes, Newdeal, Darco), and one with polyaxially-locked screws (90° ± 15°) (Rimbus). Synthetic calcanei were osteotomised to create a fracture model and then fixed with the plates and screws. Seven specimens for each plate model were subjected to cyclic loading (preload 20 N, 1000 cycles at 800 N, 0.75 mm/s), and load to failure (0.75 mm/s).

During cyclic loading, the plate with polyaxially-locked screws (Rimbus) showed significantly lower displacement in the primary loading direction than the plates with uniaxially-locked screws (mean values of maximum displacement during cyclic loading: Rimbus, 3.13 mm (sd 0.68); Synthes, 3.46 mm (sd 1.25); Darco, 4.48 mm (sd 3.17); Newdeal, 5.02 mm (sd 3.79); one-way analysis of variance, p < 0.001).

The increased stability of a plate with polyaxially-locked screws demonstrated during cyclic loading compared with plates with uniaxially-locked screws may be beneficial for clinical use.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 3 | Pages 369 - 376
1 May 1996
Weiler A Helling H Kirch U Zirbes TK Rehm KE

Foreign-body reaction to polyglycolide (PGA) implants has been described in man. Many animal experiments have verified the mechanical properties of fixation devices made from PGA, but a significant foreign-body reaction has not been described. We studied the effect of PGA rods in 12 sheep with standardized osteochondral fractures of the medial femoral condyle fixed with uncoloured, self-reinforced PGA rods (Biofix). Radiographs were taken at intervals ranging from two weeks to two years, and the sheep were killed at intervals ranging from six to 24 months. All knees were examined histologically.

Eleven of the 12 fractures healed radiologically and histologically. Moderate to severe osteolysis was seen at four to six weeks with maximum changes at 12 weeks in ten animals. Six knees showed fistula-like connections between the implant site and the joint space. Three developed synovitis, one with inflammatory changes involving the whole cartilage and one with destruction of the medial condyle.

Although in our study osteochondral fractures fixed with PGA rods healed reliably, there were frequent, significant foreign-body reactions. Caution is needed when considering the use of PGA fixation devices in vulnerable regions such as the knee.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 95 - 95
1 May 2012
Molony DC Kennedy J Gheiti AC Mullett JH
Full Access

Background

The treatment of olecranon fractures frequently involves the use of tension band fixation. Although associated with high union rates, this method has a high incidence of morbidity associated with soft tissue compromise and limitation of range of movement requiring frequent re-operation for removal of metal.

Objectives

We describe the use of a simple jig to ensure intramedullary placement of longitudinal K-wires and compare the accuracy of placement of wires using this device with the traditional free hand method.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 1 - 1
11 Apr 2023
Mischler D Knecht M Varga P
Full Access

Surgical education of fracture fixation biomechanics relies mainly on simplified illustrations to distill the essence of the underlying principles. These mostly consist of textbook drawings or hands-on exercises during courses, both with unique advantages such as broad availability and haptics, respectively. Computer simulations are suited to bridge these two approaches; however, the validity of such simulations must be guaranteed to teach the correct aspects. Therefore, the aim of this study was to validate finite element (FE) simulations of bone-plate constructs to be used in surgical education in terms of fracture gap movement and implant surface strain. The validation procedure was conducted in a systematic and hierarchical manner with increasing complexity. First, the material properties of the isolated implant components were determined via four-point bending of the plate and three-point bending of the screw. Second, stiffness of the screw-plate interface was evaluated by means of cantilever bending to determine the properties of the locking mechanism. Third, implant surface strain and fracture gap motion were measured by testing various configurations of entire fixation constructs on artificial bone (Canevasit) in axial compression. The determined properties of the materials and interfaces assessed in these experiments were then implemented into FE models of entire fixation constructs with different fracture width and screw configurations. The FE-predicted implant surface strains and fracture gap motions were compared with the experimental results. The simulated results of the different construct configurations correlated strongly with the experimentally measured fracture gap motions (R. 2. >0.99) and plate surface strains (R. 2. >0.95). In a systematic approach, FE model validation was achieved successfully in terms of fracture gap motion and implant deformation, confirming trustworthiness for surgical education. These validated models are used in a novel online education tool OSapp (. https://osapp.ch/. ) to illustrate and explain the biomechanical principles of fracture fixations in an interactive manner