Advertisement for orthosearch.org.uk
Results 1 - 20 of 142
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 37 - 37
1 Dec 2021
Chen H Gulati A Mangwani J Brockett C Pegg E
Full Access

Abstract. Objectives. The aim of this study was to develop an open-source finite element model of the ankle for identification of the best clinical treatment to restore stability to the ankle after injury. Methods. The ankle geometry was defined from the Visible Human Project Female CT dataset available from the National Library of Medicine, and segmented using Dragonfly software (Object Research Systems, 2020). The finite element model was created with FEBio (University of Utah, 2021) using the dynamic nonlinear implicit solver. Linear isotropic material properties were assigned to the bones (E=7300MPa, ν=0.3, ρ=1730kg/m. 3. ) and cartilage (E=10MPa, ν=0.4, ρ=1100kg/m. 3. ). Spring elements were used to represent the ligaments and material properties were taken from Mondal et al. [1]. Lagrangian contact was defined between the cartilaginous surfaces with μ=0.003. A standing load case was modelled, assuming even distribution of load between the feet. A reaction force of 344.3N was applied to the base of the foot, a muscle force of 252.2N, and the proximal ends of the tibia and fibula were fully constrained. Results. The von Mises stresses closely matched those reported by Mondal et al. for the fibula (Present study: 1.00MPa, Mondal: 1.30MPa) and the talus (Present study: 2.20MPa, Mondal: 2.39MPa). However stresses within the tibia were underpredicted (Present study: 1.08MPa, Mondal: 5.86MPa). This was because the present study modelled a shorter tibial length because of a limitation in the CT slices available, which reduced the bending force. Conclusions. This first step in producing an open source ankle model for the orthopaedics community has shown the potential of the model to generate results comparable with those found in the literature. Future work is underway to examine the robustness of the model under different loading and explore alternative open-source CT datasets. [1] Mondal, S., & Ghosh, R. (2017). J Orthopaedics, 14(3), 329–335. . https://doi.org/10.1016/j.jor.2017.05.003


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 82 - 82
1 Aug 2012
Younge A Phillips A Amis A
Full Access

Finite element models of the musculoskeletal system have the possibility of describing the in vivo situation to a greater extent than a single in vitro experimental study ever could. However these models and the assumptions made must be validated before they can be considered truly useful. The object of this study was to validate, using digital image correlation (DIC) and strain gauging, a novel free boundary condition finite element model of the femur. The femur was treated as a complete musculoskeletal construct without specific fixed restraint acting on the bone. Spring elements with defined force-displacement relationships were used to characterize all muscles and ligaments crossing the hip and knee joints. This model was subjected to a loading condition representing single leg stance. From the developed model muscle, ligament and joint reaction forces were extracted as well as displacement and strain plots. The muscles with the most influence were selected to be represented in the simplified experimental setup. To validate the finite element model a balanced in vitro experimental set up was designed. The femur was loaded proximally through a construct representative of the pelvis and balanced distally on a construct representing the tibio-femoral joint. Muscles were represented using a cabling system with glued attachments. Strains were recorded using DIC and strain gauging. DIC is an image analysis technique that enables non-contact measurement of strains across surfaces. The resulting strain distributions were compared to the finite element model. The finite element model produced hip and knee joint reaction forces comparable to in vivo data from instrumented implants. The experimental models produced strain data from both DIC and strain gauging; these were in good agreement with the finite element models. The DIC process was also shown to be a viable method for measuring strain on the surface of the specimen. In conclusion a novel approach to finite element modeling of the femur was validated, allowing greater confidence for the model to be further developed and used in clinical settings


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 81 - 81
2 Jan 2024
Vautrin A Aw J Attenborough E Varga P
Full Access

Although 3D-printed porous dental implants may possess improved osseointegration potential, they must exhibit appropriate fatigue strength. Finite element analysis (FEA) has the potential to predict the fatigue life of implants and accelerate their development. This work aimed at developing and validating an FEA-based tool to predict the fatigue behavior of porous dental implants. Test samples mimicking dental implants were designed as 4.5 mm-diameter cylinders with a fully porous section around bone level. Three porosity levels (50%, 60% and 70%) and two unit cell types (Schwarz Primitive (SP) and Schwarz W (SW)) were combined to generate six designs that were split between calibration (60SP, 70SP, 60SW, 70SW) and validation (50SP, 50SW) sets. Twenty-eight samples per design were additively manufactured from titanium powder (Ti6Al4V). The samples were tested under bending compression loading (ISO 14801) monotonically (N=4/design) to determine ultimate load (F. ult. ) (Instron 5866) and cyclically at six load levels between 50% and 10% of F. ult. (N=4/design/load level) (DYNA5dent). Failure force results were fitted to F/F. ult. = a(N. f. ). b. (Eq1) with N. f. being the number of cycles to failure, to identify parameters a and b. The endurance limit (F. e. ) was evaluated at N. f. = 5M cycles. Finite element models were built to predict the yield load (F. yield. ) of each design. Combining a linear correlation between FEA-based F. yield. and experimental F. ult. with equation Eq1 enabled FEA-based prediction of F. e. . For all designs, F. e. was comprised between 10% (all four samples surviving) and 15% (at least one failure) of F. ult. The FEA-based tool predicted F. e. values of 11.7% and 12.0% of F. ult. for the validation sets of 50SP and 50SW, respectively. Thus, the developed FEA-based workflow could accurately predict endurance limit for different implant designs and therefore could be used in future to aid the development of novel porous implants. Acknowledgements: This study was funded by EU's Horizon 2020 grant No. 953128 (I-SMarD). We gratefully acknowledge the expert advice of Prof. Philippe Zysset


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 138 - 138
2 Jan 2024
Muñoz-Moya E Ruiz C Piella G Noailly J
Full Access

This study investigates the relationships between Intervertebral Disc (IVD) morphology and biomechanics using patient-specific (PS) finite element (FE) models and poromechanical simulations. 169 3D lumbar IVD shapes from the European project MySpine (FP7-269909), spanning healthy to Pfirrmann grade 4 degeneration, were obtained from MRIs. A Bayesian Coherent Point Drift algorithm aligned meshes to a previously validated structural FE mesh of the IVD. After mesh quality analyses and Hausdorff distance measurements, mechanical simulations were performed: 8 and 16 hours of sleep and daytime, respectively, applying 0.11 and 0.54 MPa of pressure on the upper cartilage endplate (CEP). Simulation results were extracted from the anterior (ATZ) and posterior regions (PTZ) and the center of the nucleus pulposus (CNP). Data mining was performed using Linear Regression, Support Vector Machine, and eXtreme Gradient Boosting techniques. Mechanical variables of interest in DD, such as pore fluid velocity (FLVEL), water content, and swelling pressure, were examined. The morphological variables of the simulated discs were used as input features. Local morphological variables significantly impacted the local mechanical response. The local disc heights, respectively in the mid (mh), anterior (ah), and posterior (ph) regions, were key factors in general. Additionally, fluid transport, reflected by FLVEL, was greatly influenced (r2 0.69) by the shape of the upper and lower cartilage endplates (CEPs). This study suggests that disc morphology affects Mechanical variables of interest in DD. Attention should be paid to the antero-posterior distribution and local effects of disc heights. Surprisingly, the CEP morphology remotely affected the fluid transport in NP volumes around mid-height, and mechanobiological implications shall be explored. In conclusion, patient-specific IVD modeling has strong potential to unravel important correlations between IVD phenotypes and local tissue regulation. Acknowledgments: European Commission: Disc4All-MSCA-2020-ITN-ETN GA: 955735; O-Health-ERC-CoG-2021-101044828


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 120 - 120
11 Apr 2023
Hettich G Weiß J Grupp T
Full Access

In severe cases of total knee arthroplasty which cannot be treated with off-the-shelf implants anymore custom-made knee implants may serve as one of the few remaining options to restore joint function or to prevent limb amputation. Custom-made implants are specifically designed and manufactured for one individual patient in a single-unit production, in which the surgeon is responsible for the implant design characteristics in consultation with the corresponding engineer. The mechanical performance of these custom-made implants is challenging to evaluate due to the unique design characteristics and the limited time until which the implant is needed. Nevertheless, the custom-made implant must comply with clinical and regulatory requirements. The design of custom-made implants is often based on a underlying reference implant with available biomechanical test results and well-known clinical performance. To support surgeons and engineers in their decision whether a specific implant design is suitable, a method is proposed to evaluate its mechanical performance. The method uses finite element analysis (FEA) and comprises six steps: (1) Identification of the main potential failure mechanism and its corresponding FEA quantity of interest. (2) Reproduction of the biomechanical test of the reference implant via FEA. (3) Identification of the maximum value of the corresponding FEA quantity of interest at the required load level. (4) Definition of this value as the acceptance criteria for the FEA of the custom-made implant. (5) Reproduction of the biomechanical test with the custom-made implant via FEA. (6) Conclusion whether the acceptance criteria is fulfilled or not. The method was applied to two exemplary cases of custom-made knee implants. The FEA acceptance criteria derived from the reference implants were fulfilled in both custom-made implants. Subsequent biomechanical tests verified the FEA results. This study suggests and applies a non-destructive and efficient method for pre-clinical testing of a single-unit custom-made knee implant to evaluate whether the design is mechanically suitable


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 61 - 61
1 Dec 2020
Ramos A Mesnard M Sampaio P
Full Access

Introduction. The ankle cartilage has an important function in walking movements, mainly in sports; for active young people, between 20 and 30 years old, the incidence of osteochondral lesions is more frequent. They are also more frequent in men, affecting around 21,000 patients per year in USA with 6.5% of ankle injuries generating osteochondral lesions. The lesion is a result of ankle sprain and is most frequently found in the medial location, in 53% of cases. The main objective of this work was to develop an experimental and finite element models to study the effect of the ankle osteochondral lesion on the cartilage behavior. Materials and Methods. The right ankle joint was reconstructed from an axial CT scan presenting an osteochondral lesion in the medial position with 8mm diameter in size. An experimental model was developed, to analyze the strains and influence of lesion size and location similar to the patient. The experimental model includes two cartilages constructed by Polyjet™ 3D printing from rubber material (young modulus similar to cartilage) and bone structures from a rigid polymer. The cartilage was instrumented with two rosettes in the medial and lateral regions, near the osteochondral region. The fluid considered was water at room temperature and the experimental test was run at 1mm/s. The Finite element model (FE) includes all the components considered in the experimental apparatus and was assigned the material properties of bone as isotropic and linear elastic materials; and the cartilage the same properties of rubber material. The fluid was simulated as hyper-elastic one with a Mooney-Rivlin behavior, with constants c1=0.07506 and c2=0.00834MPa. The load applied was 680N in three positions, 15º extension, neutral and 10º flexion. Results. The experimental strain measured in the cartilage in the rosettes presents similar behavior in all experiments and repetitions. The maximum value observed near the osteochondral lesion was 3014(±5.6)µε in comparison with the intact condition it was 468 (±1.95)µε. The osteochondral lesion increases the strains around 6.5 times and the synovial liquid reduces the intensity of strain distribution. The numerical model presents a good correlation with the experiments (R2 0.944), but the FE model underestimates the values. Discussion and conclusion. As a first conclusion, the size of the osteochondral lesion is important for the strains developed in cartilage. The size of lesion greater than 10mm is critical for the strains concentration. The synovial fluid present an important aspect in the strains measured, it reduces the strains in the external surface of cartilage and induces an increase in the lower part. This phenomenon should be addressed in more studies to evaluate this effect


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 80 - 80
2 Jan 2024
Mischler D Windolf M Gueorguiev B Varga P
Full Access

Osteosynthesis aims to maintain fracture reduction until bone healing occurs, which is not achieved in case of mechanical fixation failure. One form of failure is plastic plate bending due to overloading, occurring in up to 17% of midshaft fracture cases and often necessitating reoperation. This study aimed to replicate in-vivo conditions in a cadaveric experiment and to validate a finite element (FE) simulation to predict plastic plate bending. Six cadaveric bones were used to replicate an established ovine tibial osteotomy model with locking plates in-vitro with two implant materials (titanium, steel) and three fracture gap sizes (30, 60, 80 mm). The constructs were tested monotonically until plastic plate deformation under axial compression. Specimen-specific FE models were created from CT images. Implant material properties were determined using uniaxial tensile testing of dog bone shaped samples. The experimental tests were replicated in the simulations. Stiffness, yield, and maximum loads were compared between the experiment and FE models. Implant material properties (Young's modulus and yield stress) for steel and titanium were 184 GPa and 875 MPa, and 105 GPa and 761 MPa, respectively. Yield and maximum loads of constructs ranged between 469–491 N and 652–683 N, and 759–995 N and 1252–1600 N for steel and titanium fixations, respectively. FE models accurately and quantitatively correctly predicted experimental results for stiffness (R2=0.96), yield (R2=0.97), and ultimate load (R2=0.97). FE simulations accurately predicted plastic plate bending in osteosynthesis constructs. Construct behavior was predominantly driven by the implant itself, highlighting the importance of modelling correct material properties of metal. The validated FE models could predict subject-specific load bearing capacity of osteosyntheses in vivo in preclinical or clinical studies. Acknowledgements: This study was supported by the AO Foundation via the AOTRAUMA Network (Grant No.: AR2021_03)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 79 - 79
2 Jan 2024
Rasouligandomani M Chemorion F Bisotti M Noailly J Ballester MG
Full Access

Adult Spine Deformity (ASD) is a degenerative condition of the adult spine leading to altered spine curvatures and mechanical balance. Computational approaches, like Finite Element (FE) Models have been proposed to explore the etiology or the treatment of ASD, through biomechanical simulations. However, while the personalization of the models is a cornerstone, personalized FE models are cumbersome to generate. To cover this need, we share a virtual cohort of 16807 thoracolumbar spine FE models with different spine morphologies, presented in an online user-interface platform (SpineView). To generate these models, EOS images are used, and 3D surface spine models are reconstructed. Then, a Statistical Shape Model (SSM), is built, to further adapt a FE structured mesh template for both the bone and the soft tissues of the spine, through mesh morphing. Eventually, the SSM deformation fields allow the personalization of the mean structured FE model, leading to generate FE meshes of thoracolumbar spines with different morphologies. Models can be selectively viewed and downloaded through SpineView, according to personalized user requests of specific morphologies characterized by the geometrical parameters: Pelvic Incidence; Pelvic Tilt; Sacral Slope; Lumbar Lordosis; Global Tilt; Cobb Angle; and GAP score. Data quality is assessed using visual aids, correlation analyses, heatmaps, network graphs, Anova and t-tests, and kernel density plots to compare spinopelvic parameter distributions and identify similarities and differences. Mesh quality and ranges of motion have been assessed to evaluate the quality of the FE models. This functional repository is unique to generate virtual patient cohorts in ASD. Acknowledgements: European Commission (MSCA-TN-ETN-2020-Disc4All-955735, ERC-2021-CoG-O-Health-101044828)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 48 - 48
1 Jan 2017
Pegg E Alotta G Barrera O
Full Access

Polyethylene wear of joint replacements can cause severe clinical complications, including; osteolysis, implant loosening, inflammation and pain. Wear simulator testing is often used to assess new designs, but it is expensive and time consuming. It is possible to predict the volume of polyethylene implant wear from finite element models using a modification of Archard's classic wear law [1–2]. Typically, linear elastic isotropic, or elasto-plastic material models are used to represent the polyethylene. The purpose of this study was to investigate whether use of a viscoelastic material model would significantly alter the predicted volumetric wear of a mobile-bearing unicompartmental knee replacement. Tensile creep-recovery experiments were performed to characterise the creep and relaxation behaviour of the polyethylene (moulded GUR 4150 samples machined to 180×20×1 mm). Samples were loaded to 3 MPa stress in 4 minutes, and then held for 6 hours, the tensile stress was removed and samples were left to relax for 6 hours. The mechanical test data was used fit to a validated three–dimensional fractional Maxwell viscoelastic constitutive material model [3]. An explicit finite element model of a mobile–bearing unicompartmental knee replacement was created, which has been described previously [4]. The medial knee replacement was loaded to 1200 N over a period of 0.2 s. The bearing was meshed using quadratic tetrahedral elements (1.5 mm seeding size based on results of a mesh convergence study), and the femoral component was represented as an analytical rigid body. Wear predictions were made from the contact stress and sliding distance using Archard's law, as has been described in the literature [1–2]. A wear factor of 5.24×10. −11. was used based upon the work by Netter et al. [2]. All models were created and solved using ABAQUS finite element software (version 6.14, Simulia, Dassault Systemes). The fractional viscoelastic material model predicted almost twice as much wear (0.119 mm. 3. /million cycles) compared to the elasto-plastic model (0.069 mm. 3. /million cycles). The higher wear prediction was due to both an increased sliding distance and higher contact pressures in the viscoelastic model. These preliminary findings indicate the simplified elasto-plastic polyethylene material representation can underestimate wear predictions from numerical simulations. Polyethylene is known to be a viscoelastic material which undergoes creep clinically, and it is not surprising that it is necessary to represent that viscoelastic behaviour to accurately predict implant wear. However, it does increase the complexity and run time of such computational studies, which may be prohibitive


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 62 - 62
11 Apr 2023
Preutenborbeck M Wright P Loughran G Bishop N
Full Access

Orthopaedic impaction-instruments are used to drive implants into the bone of the patient. Pre-clinical experimental testing protocols and computer models of those are used to assess robustness and functional efficiency of such instruments. This generally involves impaction of the instrument mounted on a substrate that should represent the mechanics of the patient. In this study, the effects of the substrate on stressing of the impaction-instruments were investigated using dynamic finite element analysis. Model results were compared with experimental data from lab protocols, which have been derived to recreate the mechanics of cadaveric implantations, which represent clinical conditions. FEA models of selected experimental protocols were created in which a simplified instrument was impacted on substrates with varying material properties and boundary conditions. After impaction, the instrument settled into a modal vibration which then decayed over time. The resulting axial strain data from the computational model was compared to strain-gauge data collected from experimental measurements. Strain signal amplitude, frequency and decay were compared. The damping-ratio was derived from the decay of the strain signal. The computational model slightly over-predicted the initial experimental strain amplitudes in all cases, but the frequency of the cyclic strain signals matched. However, the model underestimated the experimentally measured rate of signal decay. Inclusion of implant seating and soft-tissue conditions had little effect on decay. Clinical failures of impaction-instruments may be related to multiple fatigue cycles for each impaction and should be modelled accurately to allow failure prediction. Any soft substrate results in an impedance mismatch at the instrument interface, which reflects the pressure wave and causes vibration with a frequency related to the speed-of-sound in the instrument, and its geometry. While this could be accurately modelled computationally, signal decay was underestimated. Further experimental quantification of energy losses will be important to understand vibration decay


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 93 - 93
11 Apr 2023
de Angelis N Beaule P Speirs A
Full Access

Femoro-acetabular impingement involves a deformity of the hip joint and is associated with hip osteoarthritis. Although 15% of the asymptomatic population exhibits a deformity, it is not clear who will develop symptoms. Current diagnostic imaging measures have either low specificity or low sensitivity and do not consider the dynamic nature of impingement during daily activities. The goal of this study is to determine stresses in the cartilage, subchondral bone and labrum of normal and impinging hips during activities such as walking and sitting down. Quantitative CT scans were obtained of a healthy Control and a participant with a symptomatic femoral cam deformity (‘Bump’). 3D models of the hip were created from automatic segmentation of CT scans. Cartilage layers were added so the articular surface was the mid-line of the joint. Finite element meshes were generated in each region. Bone elastic modulus was assigned element-by-element, calculated from CT intensity converted to bone mineral density using a calibration phantom. Cartilage was modelled as poroelastic, E=0.467 MPa, v=0.167, and permeability 3×10. -16. m. 4. /N s. The pelvis was fixed while rotations and contact forces from Bergmann et al. (2001) were applied to the femur over one load cycle for walking and sitting in a chair. All analyses were performed in FEBio. High shear stresses were seen near the acetabular cartilage-labrum junction in the Bump model, up to 0.12 MPa for walking and were much higher than in the Control. Patient-specific modelling can be used to assess contact and tissue stresses during different activities to better understand the risk of degeneration in individuals, especially for activities that involve high hip flexion. The high stresses at the cartilage labrum interface could explain so-called bucket-handle tears of the labrum


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 75 - 75
1 May 2017
Koris J Blunn G Coathup M
Full Access

Background. Children suffering from primary bone cancer necessitating resection of growth plates, may suffer progressive leg length discrepancy, which can be attenuated with extendable prostheses. A serious complication is catastrophic implant failure. Over time, bone will remodel, altering the stress pattern in the implant. By using finite element analysis we can model different bone remodeling conditions to ascertain the effect that this will have on stress distribution and magnitude. A finite element analysis was performed. Simplified computer generated models were designed of a cemented femoral Stanmore growing massive endoprosthesis. Three scenarios were designed, modelled on post-operative radiographs. Scenario 1 had a gap between the end of the femur and the implant collar, scenario 2 had no gap, but with no bone attachment into the collar, and scenario 3 had growth of the bone over the length of the collar with attachment. Physiological loading conditions were applied. The resultant stress in the implant for each scenario was measured, and compared to the strength of the material. Peak stresses were recorded at the stem-collar junction. The maximum stress recorded in the implant in scenario 1 was 3104.2Mpa, compared to 1054.4Mpa in scenario 2, and 321.2Mpa in scenario 3. Conclusions. Both accurate reduction and bone growth with attachment to the stem of a massive endoprosthesis will greatly reduce the resultant stress in the implant under loading conditions. The load is redistributed throughout the length of the bone. This may help to prevent catastrophic failure in the implant under loading conditions. Further investigations of patient findings are needed to ensure the model findings are verified. Level of Evidence. IIb (Theoretical)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 15 - 15
17 Nov 2023
Mondal S Mangwani J Brockett C Gulati A Pegg E
Full Access

Abstract. Objectives. This abstract provides an update on the Open Ankle Models being developed at the University of Bath. The goal of this project is to create three fully open-source finite element (FE) ankle models, including bones, ligaments, and cartilages, appropriate musculoskeletal loading and boundary conditions, and heterogeneous material property distribution for a standardised representation of ankle biomechanics and pre-clinical ankle joint analysis. Methods. A computed tomography (CT) scan data (pixel size of 0.815 mm, and slice thickness of 1 mm) was used to develop the 3D geometry of the bones (tibia, talus, calcaneus, fibula, and navicular). Each bone was given the properties of a heterogeneous elastic material based on the CT greyscale. The density values for each bone element were calculated using a linear empirical relation, ρ= 0.0405 + (0.000918) HU and then power law equations were utilised to get the Young's Modulus value for each bone element [1]. At the bone junction, a thickness of cartilage ranging from 0.5–1 mm, and was modelled as a linear material (E=10 MPa, ν=0.4 [2]). All ligament insertions and positions were represented by four parallel spring elements, and the ligament stiffness and material attributes were applied in accordance with the published literature [2]. The ankle model was subjected to static loading (balance standing position). Four noded tetrahedral elements were used for the discretization of bones and cartilages. All degrees of freedom were restricted at the proximal ends of the tibia and fibula. The ground reaction forces were applied at the underneath of the calcaneus bone. The interaction between the cartilages and bones was modelled using an augmented contact algorithm with a sliding elastic contact between each cartilage. A tied elastic contact was used between the cartilages and the bone. FEbio 2.1.0 (University of Utah, USA) was used to construct the open-source ankle model. Results. When the double-legged stance phase loading condition was taken into consideration, stress at the antero-medial tibial wall (ranged from 1 to 7 MPa) was found to be similar to the prior work [2], indicating bulk of the load transfer was through this region. The maximum principal strain was predicted at the different regions on bones around the ankle joint. The proximal surface of the talus, and tibial distal surface were shown to have the highest maximum principal strains followed by antero-medial walls of the tibia bone, at the proximal location. Conclusions. The present open 3D FE model of the ankle will assist researchers in better understanding ankle biomechanics, precisely predicting load transfer, and examining the ankle to address unmet clinical needs for this joint. The results of the current investigation are realistic in terms of load transfer and stress-strain distribution across the ankle joint and well comparable to those reported in the literature [2]. However, sensitivity and ankle instability simulations will be performed in future work to investigate the model's reliability and robustness. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 61 - 61
1 Mar 2021
Kayode O Day G Mengoni M Conaghan P Wilcox R
Full Access

Abstract. Introduction. Osteoarthritis (OA) affects more than four million people in the UK alone. Bone marrow lesions (BMLs) are a common feature of subchondral bone pathology in OA. Both bone volume fraction and mineral density within the BML are abnormal. The aim of this study was to investigate the effect of a potential treatment (bone augmentation) for BMLs on the knee joint mechanics in cases with healthy and fully degenerated cartilage, using finite element (FE) models of the joint to study the effect of BML size. Methods. FE models of a human tibiofemoral joint were created based on models from the Open Knee project (simtk.org). Following initial mesh convergence studies, each model was manipulated in ScanIP (Synopsys-Simpleware, UK) to incorporate a BML 2mm below the surface of the tibial contact region. Models representing extreme cases (healthy cartilage, no cartilage; BML region as an empty cavity or filled with bone substitution material (200GPa)) were generated, each with different sizes of BML. Models were tested under a representative physiological load of 2kN. Results. In the absence of cartilage, the stress distribution through the bone was more localized with higher peaks in comparison to models with cartilage. In models with cartilage, BML cavity led to changes in the stress distribution through the tibia, with increasing BML size leading to higher stresses. When the BML region was represented by the substitution material very little difference was seen in comparison to models with no defect at all. Conclusions. The results of this study illustrate how the cartilage and bone behaviour in the tibiofemoral joint are linked, and that augmentation of a BML with a bone substitute has the potential to reduce adverse loading of the surrounding bone. Funders. EPSRC, NIHR. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 83 - 83
1 Aug 2012
Younge A Phillips A Amis A
Full Access

Finite element (FE) modelling has been widely used to create and assess musculoskeletal models. However to achieve a high degree of resolution in describing the structure, significant computational power and time are required. The objective of this study was to introduce a complimentary approach to FE modelling using structural beam theory. This requires far less computational power and models can be analyzed in a fraction of a second, offering quick, intuitive results for engineers and surgeons. Beam theory was first introduced as a method for analyzing the stresses in long bones in 1917. It was used as the de facto method for several decades. The introduction of FE modelling offered great advances; beam theory calculations were considered laborious and less accurate. However with the advances in computational power so too comes the ability to create modern automated beam theory models. A study was conducted using the commercially available general structural analysis software Oasys GSA. A synthetic biomechanical femur was CT scanned and the solid model constructed. This model was sectioned into approximately seventy sections in the regions of the shaft and condyles, thirty in the neck and thirty in the head. Line plots of the shape of each of the sections, for both cortical and trabecular parts, were then imported into Oasys GSA. The centroid, area, second moments of area and torsion constant were calculated for each section. The sections were plotted at the position of the cortical centroid and parallel axis theorem was used to plot the trabecular section in the same position. A force representing the hip joint reaction force was applied to a node corresponding to the centre of the femoral head. Muscular forces were applied to stiff radial elements according to those active at the point of peak joint contact force during gait. Oasys GSA produced instant results showing moment and deflection characteristics of the femur. This data was then used to predict strain plots, which were directly compared to FE results. Initial results compare favourably. This study has demonstrated an updated fast, efficient and intuitive alternative to finite element modelling


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 37 - 37
1 Mar 2021
Kaufmann J McGregor A Phillips A
Full Access

Abstract. Objectives. Osteoporosis of the pelvis and femur is diagnosed in a high proportion of lower-limb amputees which carries an increased fracture risk and subsequently serious implications on mobility, physical dependency and morbidity. Through the development of biofidelic musculoskeletal and finite element (FE) models, we aim to determine the effect of lower-limb amputation on long-term bone remodelling in the hip and to understand the potential underpinning mechanisms for bone degradation in the younger amputee population. Methods. Our models are patient specific and anatomically accurate. Geometries are derived from MRI-scans of one bilateral, above-knee, amputee and one body-matched control subject. Musculoskeletal modelling enables comparison of muscle and joint reaction-forces throughout gait. This provides the loading scenario implemented in FE. FE modelling demonstrates the effect of loading on the amputated limb via a prosthetic socket by comparing bone mechanical stimulation in amputee and control cases. Results. Musculoskeletal modelling shows that the bilateral amputee has 25% higher peak hip-reaction force than controls but a 54% lower peak knee-reaction force. Compensation for missing muscles and joints cause large-scale changes to the muscle loading patterns of the residual limb. FE analysis shows a 32% reduction in bone stimulation within the proximal femur and an 81% reduction in the distal femoral shaft when compared to the healthy control. A shielding effect from weight-bearing through a prosthetic socket was observed that may offset any increases in joint and muscle loading at the amputated hip. Conclusions. Bone loss in the young amputee population could be driven by unloading osteopenia where altered joint and muscle loads cause altered mechanical stimulus in the femur. Over many cycles of remodelling, a net bone loss occurs. Importantly, this suggests that the issue is preventable, or even reversible, with the implementation of targeted loading regimes or changes to the design of the prosthetic socket. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 22 - 22
1 Nov 2018
Inaba Y
Full Access

Biomechanical analysis is important to evaluate the effect of orthopaedic surgeries. CT-image based finite element method (CT-FEM) is one of the most important techniques in the computational biomechanics field. We have been applied CT-FEM to evaluate resorptive bone remodeling, secondary to stress shielding, after total hip arthroplasty (THA). We compared the equivalent stress and strain energy density to postoperative BMD (bone mineral density) change in the femur after THA, and a significant correlation was observed between the rate of changes in BMD after THA and equivalent stress. For periacetabular osteotomy cases, we investigated mechanical stress in the hip joint before and after surgery. Mechanical stress in the hip joint decreased significantly after osteotomy and correlated with the degree of the acetabular coverage. For arthroscopic osteochondroplasty cases, we examined mechanical strength of the proximal femur after cam resection using CT-FEM. The results suggested that both the depth and area of the resection at the distal part of femoral head-neck junction correlated strongly with fracture risk after osteochondroplasty. This talk consists of our results of clinical application studies using CT-FEM, and importance of application of CT-FEM to biomechanical studies to assess the effect of orthopaedic surgeries


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 19 - 19
1 Mar 2021
Mischler D Schader JF Windolf M Varga P
Full Access

To date, the fixation of proximal humeral fractures with angular stable locking plates is still insufficient with mechanical failure rates of 18% to 35%. The PHILOS plate (DePuy Synthes, Switzerland) is one of the most used implants. However, this plate has not been demonstrated to be optimal; the closely symmetric plate design and the largely heterogeneous bone mineral density (BMD) distribution of the humeral head suggest that the primary implant stability may be improved by optimizing the screw orientations. Finite element (FE) analysis allows testing of various implant configurations repeatedly to find the optimal design. The aim of this study was to evaluate whether computational optimization of the orientation of the PHILOS plate locking screws using a validated FE methodology can improve the predicted primary implant stability. The FE models of nineteen low-density (humeral head BMD range: 73.5 – 139.5 mg/cm3) left proximal humeri of 10 male and 9 female elderly donors (mean ± SD age: 83 ± 8.8 years) were created from high-resolution peripheral computer tomography images (XtremeCT, Scanco Medical, Switzerland), using a previously developed and validated computational osteosynthesis framework. To simulate an unstable mal-reduced 3-part fracture (AO/OTA 11-B3.2), the samples were virtually osteotomized and fixed with the PHILOS plate, using six proximal screws (rows A, B and E) according to the surgical guide. Three physiological loading modes with forces taken from musculoskeletal models (AnyBody, AnyBody Technology A/S, Denmark) were applied. The FE analyses were performed with Abaqus/Standard (Simulia, USA). The average principal compressive strain was evaluated in cylindrical bone regions around the screw tips; since this parameter was shown to be correlated with the experimental number of cycles to screw cut-out failure (R2 = 0.90). In a parametric analysis, the orientation of each of the six proximal screws was varied by steps of 5 in a 5×5 grid, while keeping the screw head positions constant. Unfeasible configurations were discarded. 5280 simulations were performed by repeating the procedure for each sample and loading case. The best screw configuration was defined as the one achieving the largest overall reduction in peri-screw bone strain in comparison with the PHILOS plate. With the final optimized configuration, the angle of each screw could be improved, exhibiting significantly smaller average bone strain around the screw tips (range of reduction: 0.4% – 38.3%, mean ± SD: 18.49% ± 9.56%). The used simulation approach may help to improve the fixation of complex proximal humerus fractures, especially for the target populations of patients at high risk of failure


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 125 - 125
1 Mar 2021
Eggermont F van der Wal G Westhoff P Laar A de Jong M Rozema T Kroon HM Ayu O Derikx L Dijkstra S Verdonschot N van der Linden YM Tanck E
Full Access

Patients with cancer and bone metastases can have an increased risk of fracturing their femur. Treatment is based on the impending fracture risk: patients with a high fracture risk are considered for prophylactic surgery, whereas low fracture risk patients are treated conservatively with radiotherapy to decrease pain. Current clinical guidelines suggest to determine fracture risk based on axial cortical involvement of the lesion on conventional radiographs, but that appears to be difficult. Therefore, we developed a patient-specific finite element (FE) computer model that has shown to be able to predict fracture risk in an experimental setting and in patients. The goal of this study was to determine whether patient-specific finite element (FE) computer models are better at predicting fracture risk for femoral bone metastases compared to clinical assessments based on axial cortical involvement on conventional radiographs, as described in current clinical guidelines. 45 patients (50 affected femurs) affected with predominantly lytic bone metastases who were treated with palliative radiotherapy for pain were included. CT scans were made and patients were followed for six months to determine whether or not they fractured their femur. Non-linear isotropic FE models were created with the patient-specific geometry and bone density obtained from the CT scans. Subsequently, an axial load was simulated on the models mimicking stance. Failure loads normalized for bodyweight (BW) were calculated for each femur. High and low fracture risks were determined using a failure load of 7.5 × BW as a threshold. Experienced assessors measured axial cortical involvement on conventional radiographs. Following clinical guidelines, patients with lesions larger than 30 mm were identified as having a high fracture risk. FE predictions were compared to clinical assessments by means of diagnostic accuracy values (sensitivity, specificity and positive (PPV) and negative predictive values (NPV)). Seven femurs (14%) fractured during follow-up. Median time to fracture was 8 weeks. FE models were better at predicting fracture risk in comparison to clinical assessments based on axial cortical involvement (sensitivity 100% vs. 86%, specificity 74% vs. 42%, PPV 39% vs. 19%, and NPV 100% vs. 95%, for the FE computer model vs. axial cortical involvement, respectively). We concluded that patient-specific FE computer models improve fracture risk predictions of femoral bone metastases in advanced cancer patients compared to clinical assessments based on axial cortical involvement, which is currently used in clinical guidelines. Therefore, we are initiating a pilot for clinical implementation of the FE model


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 36 - 36
1 Apr 2018
Khalaf K Nikkhoo M Parnianpour M Bahrami M Khalaf K
Full Access

Worldwide, osteoporosis, causes more than 8.9 million fractures annually, resulting in an osteoporotic fracture every 3 seconds, where 1 in every 3 women and 1 in every 5 men aged over 50 will experience osteoporotic fractures at least once in their lifetime. Vertebral fractures, estimated at 1.4 million/year are among the most common fractures, posing enormous health and socioeconomic challenges to the individual and society at large. Considering that the great majority of individuals at high risk (up to 80%), who have already had at least one osteoporotic fracture, are neither identified nor treated, prediction of the risk factors for vertebral fractures can be of great value for prevention/early diagnosis. Recent studies show that finite element analysis of computed tomography (CT) scans provides noninvasive means to assess fracture risk and has the potential to be clinically implemented upon proper validation. The objective of this study was to develop a voxel-based finite element model using quantitative computed tomography (QCT) images in conjunction with in-vitro experiments to evaluate the strength of the vertebral bodies and predict the fracture risk criteria. A total of 10 vertebrae were dissected from juvenile sheep lumbar spines. The attached soft tissues and posterior elements and facet joints were completely removed, and the upper and lower vertebral bodies were polished using glass paper to provide smooth surfaces. The specimens were wrapped in phosphate buffer saline (PBS) soaked gauze, sealed in plastic bags, and stored in a refrigerator at −22°C. QCT scans of the specimens were captured using a bone density calibration phantom (QRM Co., Moehrendorf, Germany) with three 18 mm cylindrical inserts, providing 0, 100 and 200 mg HA/ccm, respectively. All the specimens, preserved hydrated in PBS solution, were mechanically tested at room temperature using a mechanical testing apparatus (Zwick/Roell, Ulm-Germany). The QCT images were then used to reconstruct the voxel-based FE model employing a custom-developed heterogeneous material mapping code. Five different equations for the correlation of the density and the elastic modulus were used to validate the efficiency of the FE model as compared to the in-vitro experiments. The results of the voxel-based FE models matched well with the in-vitro experiments, with an average error of 11.38 (±4.09)% based on the power law equation. A failure criterion was embedded in the FE models and the initiation of fracture was successfully predicted for all specimens. Further, typical kyphoplasty treatment was simulated in the 5 models to evaluate the application of the validated algorithm in the estimation of the failure patterns. Our novel voxel-based FE model can be used in future studies to predict the outcome of different types of therapeutic modalities/surgeries and estimate fracture risk including postoperative fractures