Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 46 - 46
1 Aug 2013
McConaghie F Payne A Kinninmonth A
Full Access

Previous work has demonstrated vulnerability of the femoral nerve to damage by anterior acetabular retractors during THA. The aim of this study was to quantify the proximity of the femoral nerve to the anterior acetabulum, on cadaveric material and MRI studies. A standard posterior approach to the hip was carried out in 6 fresh frozen cadaveric hemipelves. Following dislocation and removal of the femoral head, measurements were taken from the anterior acetabular lip to the posterior aspect of the femoral nerve as it passed over this point. 14 MRI studies of the hip were obtained from the local PACS database (7 male, 7 female; mean age 58 (range 32–80)). T1 weighted axial scans were reviewed. Measurements were obtained from the anterior acetabular lip to the posterior surface of the femoral nerve and artery, and the cross-sectional area of iliopsoas was calculated. There was no significant difference between the mean distances to the femoral nerve in the cadaveric (24 mm) and MRI groups (25.3mm) (p=0.7). On MRI images, the distance between the acetabular wall and both the femoral artery (p=0.003) and femoral nerve (p=0.007) was significantly larger in men. The femoral artery is strikingly close to the acetabulum in females, passing a mean distance of 14.8 mm, whereas in males this was 23.9 mm. The mean femoral nerve distance was 28.7 mm in males and 21.9 mm in females. The cross-sectional area of iliopsoas was significantly smaller in women (5.97 cm. 2. compared to 11.37 cm. 2. , p<0.001). Both the femoral artery and nerve run in close proximity to the anterior acetabular lip. Care should be taken when placing instruments in this area to avoid neurovascular injury. The increased incidence of femoral nerve damage in women following THA may be due to the significantly smaller bulk of iliopsoas


Bone & Joint Research
Vol. 3, Issue 6 | Pages 212 - 216
1 Jun 2014
McConaghie FA Payne AP Kinninmonth AWG

Objectives. Acetabular retractors have been implicated in damage to the femoral and obturator nerves during total hip replacement. The aim of this study was to determine the anatomical relationship between retractor placement and these nerves. Methods. A posterior approach to the hip was carried out in six fresh cadaveric half pelves. Large Hohmann acetabular retractors were placed anteriorly, over the acetabular lip, and inferiorly, and their relationship to the femoral and obturator nerves was examined. Results. If contact with bone was not maintained during retractor placement, the tip of the anterior retractor had the potential to compress the femoral nerve by passing superficial to the iliopsoas. If pressure was removed from the anterior retractor, the tip pivoted on the anterior acetabular lip, and passed superficial to the iliopsoas, overlying and compressing the femoral nerve, when pressure was reapplied. The inferior retractor pierced the obturator membrane in all specimens medial to the obturator nerve, with subsequent retraction causing the tip to move laterally, making contact with the nerve. . Conclusion. Iliopsoas can only offer protection to the femoral nerve if the retractor passes deep to the muscle bulk. The anterior retractor should be reinserted if pressure is removed intra-operatively. Vigorous movement of the inferior retractor should be avoided. Cite this article: Bone Joint Res 2014;3:212–6


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 57 - 57
1 Aug 2013
McConaghie F Payne A Kinninmonth A
Full Access

Acetabular retractors have been implicated in damage to the femoral and obturator nerves during total hip arthroplasty (THA). Despite this association, the anatomical relationship between retractor and nerve has not been elucidated. A posterior approach to the hip was carried out in 6 fresh frozen cadaveric hemi- pelvises. Large Hohmann acetabular retractors were placed anteriorly over the acetabular rim, and inferiorly, as per routine practice in THA. The femoral and obturator nerves were identified through dissection and their relationship to the retractors was examined. If contact with bone was not maintained during retractor placement, the tip of the anterior retractor had the potential to compress the femoral nerve, by passing either superficial to, or through the bulk of the iliopsoas muscle. If pressure was removed from the anterior retractor, the tip pivoted on the anterior acetabular lip, and passed superficial to iliopsoas, overlying and compressing the femoral nerve, when pressure was reapplied. The inferior retractor pierced the obturator membrane, medial to the obturator foramen in all specimens. Subsequent retraction resulted in the tip moving laterally to contact the obturator nerve. Both the femoral and obturator nerves are vulnerable to injury around the acetabulum through the routine placement of retractors in THA. The femoral nerve is vulnerable where it passes over the anterior acetabulum. Iliopsoas can only offer protection if the retractor passes deep to the muscle bulk. If pressure is removed from the anterior retractor intra-operatively it should be reinserted. The obturator nerve is vulnerable as it exits the pelvis through the obturator foramen. Vigorous movement of the inferior retractor should be avoided. Awareness of the anatomy around the acetabulum is essential when placing retractors


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 93 - 93
1 Jul 2014
Egloff C Serrattan R Hart D Sawatsky A Leonard T Valderrabano V Herzog W
Full Access

Summary Statement. We observed that severe muscle weakness leads to OA, whereas a transient inflammatory stimulus did not have a significant effect on cartilage degradation. This arises the thought that a severe but transient inflammation may not be an independent risk factor for OA. Introduction. Biomechanical disturbances and joint inflammation are known risk factors, which may provoke or advance osteoarthritis (OA). However, the effect of interactions of such risk factors on the onset and progression of OA are still poorly understood. Therefore, the goal of this study was to investigate the in vivo effects of muscle weakness, joint inflammation, and the combination of these two risk factors, on the onset and progression of OA in the rabbit knee. Patients & Methods. Thirty 1-year-old skeletally mature female New Zealand White rabbits (weight: average 5.7kg, range 4.8–6.6kg) were used in this study. The animals were divided into four experimental groups: (i) surgical transection of the nerve branch of the common femoral nerve leading to the vastus lateralis muscle; (ii) muscle weakness of the quadriceps muscle induced by a chronic intramuscular injection of Botulinum toxin A (BTX-A) (3); (iii) intraarticular injection in the experimental knee joint with commercially available sterile Carrageenan solution to induce a transient severe inflammatory reaction (4); (iv) administration of both intraarticular injection of Carrageenan and intramuscular injection of BTX-A. In each animal, one hind limb was randomly assigned to the experimental intervention, while the contralateral side acted as its own control. Ninety days following intervention, muscle mass, joint diameter and cartilage histology of the femur, femoral groove, tibia and patella were assessed and microscopically analyzed using the OARSI histology score. Results. Transection of the femoral branch leading to the vastus lateralis as well as the administration of BTX-A led to a significant muscle mass loss for the vastus lateralis and the total quadriceps group, respectively. Similar results were seen in the combined Carrageenan/BTX-A group. There were no changes in total quadriceps muscle mass in the Carrageenan group. Knee joint diameters of the experimental limb were significantly increased in the Carrageenan and Carrageenan/BTX groups. VL transection and BTX-A injection did not cause significant increases in joint diameter. Histologic assessment of the cartilage showed that weakness of the vastus lateralis resulted in significantly higher OARSI scores in the patella and femoral groove, but not the tibiofemoral articulation. The administration of BTX-A caused significant cartilage damage in all 4 compartments (patella, femur, tibia, femoral groove). Intraarticular injection of Carrageenan did not cause significant cartilage damage in any compartment compared to the contralateral side. The combination of BTX-A and Carrageenan resulted in severe cartilage damage in the patella in all four compartments of the knee. The most severe damage was found on the medial side of the tibiofemoral joint and the lateral side of the patellofemoral joint. Conclusion. Severe muscle weakness over a three months period leads to the onset and progression of OA in the rabbit knee. A transient local inflammatory stimulus did not promote cartilage degradation, nor did it enhance cartilage degradation when it was combined with muscle weakness. This result is surprising and adds to the literature the idea that a severe but transient inflammation may not be an independent risk factor for OA


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1581 - 1581
1 Nov 2013
Cook TM

We welcome letters to the Editor concerning articles that have recently been published. Such letters will be subject to the usual stages of selection and editing; where appropriate the authors of the original article will be offered the opportunity to reply.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 971 - 976
1 Jul 2007
Kampa RJ Prasthofer A Lawrence-Watt DJ Pattison RM

In order to determine the potential for an internervous safe zone, 20 hips from human cadavers were dissected to map out the precise pattern of innervation of the hip capsule. The results were illustrated in the form of a clock face. The reference point for measurement was the inferior acetabular notch, representing six o’clock. Capsular branches from between five and seven nerves contributed to each hip joint, and were found to innervate the capsule in a relatively constant pattern. An internervous safe zone was identified anterosuperiorly in an arc of 45° between the positions of one o’clock and half past two.

Our study shows that there is an internervous zone that could be safely used in a capsule-retaining anterior, anterolateral or lateral approach to the hip, or during portal placement in hip arthroscopy.


Bone & Joint Research
Vol. 4, Issue 5 | Pages 78 - 83
1 May 2015
Martinkevich P Rahbek O Møller-Madsen B Søballe K Stilling M

Objectives

Lengthening osteotomies of the calcaneus in children are in general grafted with bone from the iliac crest. Artificial bone grafts have been introduced, however, their structural and clinical durability has not been documented. Radiostereometric analysis (RSA) is a very accurate and precise method for measurements of rigid body movements including the evaluation of joint implant and fracture stability, however, RSA has not previously been used in clinical studies of calcaneal osteotomies. We assessed the precision of RSA as a measurement tool in a lateral calcaneal lengthening osteotomy (LCLO).

Methods

LCLO was performed in six fixed adult cadaver feet. Tantalum markers were inserted on each side of the osteotomy and in the cuboideum. Lengthening was done with a plexiglas wedge. A total of 24 radiological double examinations were obtained. Two feet were excluded due to loose and poorly dispersed markers. Precision was assessed as systematic bias and 95% repeatability limits.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 254 - 257
1 Feb 2008
Nakajima T Ohtori S Inoue G Koshi T Yamamoto S Nakamura J Takahashi K Harada Y

Using a rat model the characteristics of the sensory neurones of the dorsal-root ganglia (DRG) innervating the hip were investigated by retrograde neurotransport and immunohistochemistry.

Fluoro-Gold solution (FG) was injected into the left hip of ten rats. Seven days later the DRG from both sides between T12 and L6 were harvested. The number of FG-labelled calcitonin gene-related peptide-immunoreactive or isolectin B4-binding neurones were counted.

The FG-labelled neurones were distributed throughout the left DRGs between T13 and L5, primarily at L2, L3, and L4. Few FG-labelled isolectin B4-binding neurones were present in the DRGs of either side between T13 and L5, but calcitonin gene-related peptide-immunoreactive neurones made up 30% of all FG-labelled neurones.

Our findings may explain the referral of pain from the hip to the thigh or lower leg corresponding to the L2, L3 and L4 levels. Since most neurones are calcitonin gene-related peptide-immunoreactive peptide-containing neurones, they may have a more significant role in the perception of pain in the hip as peptidergic DRG neurones.