what size of defect is optimal for creating an atrophic nonunion animal model has not been well defined. Our aim in this study was to establish a clinically relevant model of atrophic nonunion in rat femur by creation of a bone defect to research fracture healing and nonunion. We used 30 male Fischer 344 rats (aged 10–11 weeks), which were equally divided into six groups. The segmental bone defects to a single femur in each rat were performed by double transverse osteotomy, and different sized defects were created by group for each group (1 mm, 2 mm, 3 mm, 4 mm, 5 mm and 6 mm). The defects were measured and maintained strictly by using an original external fixator. The periosteum for each defect was stripped both proximally and distally. Thereafter, these models were evaluated by radiology and histology. Radiographs were taken at baseline and at intervals of two weeks over a period of 8 weeks. Atrophic nonunion was defined as a lack of continuity and atrophy of both defect ends radiologically and histologically at eight weeks.Introduction
Materials and methods
Objectives. The purpose of this study was to refine an accepted contaminated
rat
Systemic antibiotics reduce infection in open
fractures. Local delivery of antibiotics can provide higher doses
to wounds without toxic systemic effects. This study investigated
the effect on infection of combining systemic with local antibiotics
via polymethylmethacrylate (PMMA) beads or gel delivery. An established Combined local and systemic antibiotics were superior to systemic
antibiotics alone at reducing the quantity of bacteria recoverable
from each group (p = 0.002 for gel; p = 0.032 for beads). There
was no difference in the bacterial counts between bead and gel delivery
(p = 0.62). These results suggest that local antibiotics augment the antimicrobial
effect of systemic antibiotics. Although no significant difference
was found between vehicles, gel delivery offers technical advantages
with its biodegradable nature, ability to conform to wound shape
and to deliver increased doses. Further study is required to see
if the gel delivery system has a clinical role. Cite this article:
The results of the treatment of 31 open femoral fractures (29 patients) with significant bone loss in a single trauma unit were reviewed. A protocol of early soft-tissue and bony debridement was followed by skeletal stabilisation using a locked intramedullary nail or a dynamic condylar plate for diaphyseal and metaphyseal fractures respectively. Soft-tissue closure was obtained within 48 hours then followed, if required, by elective bone grafting with or without exchange nailing. The mean time to union was 51 weeks (20 to 156). The time to union and functional outcome were largely dependent upon the location and extent of the bone loss. It was achieved more rapidly in fractures with wedge defects than in those with segmental bone loss. Fractures with metaphyseal defects healed more rapidly than those of comparable size in the diaphysis. Complications were more common in fractures with greater bone loss, and included stiffness of the knee, malunion and limb-length discrepancy. Based on our findings, we have produced an algorithm for the treatment of these injuries. We conclude that satisfactory results can be achieved in most femoral fractures with bone loss using initial debridement and skeletal stabilisation to maintain length, with further procedures as required.
We have managed 21 patients with a fracture of the tibia complicated by bone and soft-tissue loss as a result of an open fracture in 10, or following debridement of an infected nonunion in 11, by resection of all the devitalised tissues, acute limb shortening to close the defect, application of an external fixator and metaphyseal osteotomy for re-lengthening. The mean bone loss was 4.7 cm (3 to 11). The mean age of the patients was 28.8 years (12 to 54) and the mean follow-up was 34.8 months (24 to 75). All the fractures united with a well-aligned limb. The mean duration of treatment for the ten grade-III A+B open fractures (according to the Gustilo-Anderson classification) was 5.7 months (4.5 to 8) and for the nonunions, 7.6 months (5.5 to 12.5). Complications included one refracture, one transient palsy of the peroneal nerve and one equinus contracture of 10°.