Hamstring muscle strain is a common sports related injury. It has been reported in a variety of sports, following acceleration or deceleration while running or jumping. Injury may vary from simple muscle strains to partial or complete rupture of the hamstring origin. Avulsion fracture of the ischial tuberosity has also been described. Simple hamstring muscle strains are treated conservatively. Surgical
Pain and disability following wrist trauma are highly prevalent, however the mechanisms underlying painare highly unknown. Recent studies in the knee have demonstrated that altered joint contact may induce changes to the subchondral bone density and associated pain following trauma, due to the vascularity of the subchondral bone. In order to examine these changes, a depth-specific imaging technique using quantitative computed tomography (QCT) has been used. We've demonstrated the utility of QCT in measuring vBMD according to static jointcontact and found differences invBMD between healthy and previously injured wrists. However, analyzing a static joint in a neutral position is not necessarily indicative of higher or lower vBMD. Therefore, the purposeof this study is to explore the relationship between subchondral vBMDand kinematic joint contact using the same imaging technique. To demonstrate the relationship between kinematic joint contact and subchondral vBMDusing QCT, we analyzed the wrists of n = 10 participants (n = 5 healthy and n = 5 with previous wrist trauma). Participantsunderwent 4DCT scans while performing flexion to extension to estimate radiocarpal (specifically the radiolunate (RL) and radioscaphoid (RS)) joint contact area (JCa) between the articulating surfaces. The participantsalso underwent a static CT scan accompanied by a calibration phantom with known material densities that was used to estimate subchondral vBMDof the distal radius. Joint contact is measured by calculatinginter-bone distances (mm2) using a previously validated algorithm. Subchondral vBMD is presented using mean vBMD (mg/K2HPO4) at three normalized depths from the subchondral surface (0 to 2.5, 2.5 to 5 and 5 to 7.5 mm) of the distal radius. The participants in the healthy cohort demonstrated a larger JCa in the RS joint during both extension and flexion, while the trauma cohort demonstrated a larger JCa in the RL during extension and flexion. With regards to vBMD, the healthy cohort demonstrated a higher vBMD for all three normalized depths from the subchondral surface when compared to the trauma cohort. Results from our preliminary analysis demonstrate that in the RL joint specifically, a larger JCa throughout flexion and extension was associated with an overall lower vBMD across all three normalized layers. Potential reasoning behind this association could be that following wrist trauma, altered joint contact mechanics due to pathological changes (for example, musculoskeletal trauma), has led to overloading in the RL region. The overloading on this specific region may have led to a decrease in the underlying vBMD when compared to a healthy wrist. However, we are unable to conclude if this is a momentary decrease in vBMD that could be associated with the acute healing phase following trauma given that our analysis is cross-sectional. Therefore, future work should aim to analyze kinematic JCa and vBMD longitudinally to better understand how changes in kinematic JCa over time, and how the healing process following wrist trauma, impacts the underlying subchondral bone in the acute and longitudinal phases of recovery.
Aims. The principles of evidence-based medicine (EBM) are the foundation of modern medical practice. Surgeons are familiar with the commonly used statistical techniques to test hypotheses, summarize findings, and provide answers within a specified range of probability. Based on this knowledge, they are able to critically evaluate research before deciding whether or not to adopt the findings into practice. Recently, there has been an increased use of artificial intelligence (AI) to analyze information and derive findings in orthopaedic research. These techniques use a set of statistical tools that are increasingly complex and may be unfamiliar to the orthopaedic surgeon. It is unclear if this shift towards less familiar techniques is widely accepted in the orthopaedic community. This study aimed to provide an
The rate of arterial injury in trauma patients with pelvic ring fractures has been cited as high as 15%. Addressing this source of hemorrhage is essential in the management of these patients as mortality rates are reported as 50%. Percutaneous techniques to control arterial bleeding, such as embolization and REBOA, are being employed with increasing frequency due to their assumed lower morbidity and invasiveness than open
Aim. The rise of multidrug-resistant bacteria and the decreasing efficacy of antibiotic therapy in successfully treating biofilm-associated infections are prompting the
Aim. Extraspinal osteoarticular tuberculosis (TOA-ER) is a rare form of extra-pulmonary tuberculosis. It remains a topical problem not only in underdeveloped countries but also in developed countries due to cases of immune deficiency. Through a study of 40 cases, we specify the current diagnostic aspects of TOA-ER and detail their therapeutic and evolutionary modalities. Method. The mean age of our patients was 40 years with a clear predominance of females observed (SR = 0.66). 76.31% of the cases were from a rural setting. The impairment was single-focal in 72.5%. Associated tuberculosis location was found in 59% of cases. Pain and swelling were the main clinical symptoms. Signs of tuberculous impregnation were found in less than half of the cases. The IDR was positive in 67%. All patients underwent an appropriate radiological
Sciatic nerve injury remains a significant and devastating complication of total hip arthroplasty. Incidence as quoted in the literature ranges from 0.08% in primary joint replacement to 7.5% in revision arthroplasty. While as urgent
Analysis of orthopaedic malpractice claims has shown that highest impact allegations (highest payment dollars per claim) were those that were related to failure to protect anatomic structures in surgical fields. The prevalence of subclinical peripheral neurologic deficit following reverse and anatomic shoulder arthroplasty has been reported to be 47% and 4%, respectively. We propose the following five rules in order to avoid neurovascular injury during shoulder arthroplasty cases:. Pre-operative planning would assure a smooth operation without intra-operative difficulties. Adequate planning would include appropriate imaging, obtaining previous operative reports, complete pre-operative neurovascular examination and requesting the necessary operative equipment. Tug test: It is crucial to palpate the axillary nerve and be aware of its location. The tug test is a systematic technique for locating and protecting the axillary nerve. Neuromonitoring has been utilised in shoulder surgery in the past. Nagda et al showed that nerve alerts during shoulder arthroplasty occurred 56.7% of the time and 50% of the events were with the arm in abduction, external rotation and extension; 76.7% of signals returned to normal with retractor removal and change in arm positioning. We recommend removing all retractors and returning the arm to neutral position several times during surgery, especially during the glenoid exposure when the arm is in abduction and external rotation. Newer commercially available nerve stimulators are extremely useful in locating and protecting neurovascular structures. We recommend brachial plexus
Supracondylar fractures of the humerus (SCH) are the most common fractures sustained following a fall among children. The majority of these fractures are mild, but the most severe injury types can result in a disruption to the nerves and blood supply resulting in limb threatening injuries and potential life-long disability. Better understanding of mechanisms of injury and child-related factors that influence injury, especially for severe cases, is crucial to identifying best practices and informing policy. We aim to stratify fractures and examine the associated mechanisms and circumstances of injury to identify best practices and inform supportive policy. In doing so, we plan to investigate why some children sustain more severe fractures than others by exploring mechanisms and locations of injury, and risk-taking behaviours. A prospective, mixed-methods pilot study employing a child-led research design. Our approach links narratives from qualitative photo elicitation interviews (PEI) to mapped images of the locations of injury using geotagged photographs children have taken themselves, complications and injury outcomes, and an assessment of overall risk-taking tendencies. Participants aged six-12, with the help of their photographs, were able to lay out the events leading up to, including, and following their injury. Much of this information was either not included in their medical charts or was markedly different. Themes included not being able to prevent the injury and being adventurous, as well as becoming more cautious afterwards. These can have applications to the necessity of
Avascular necrosis (AVN) of the femoral head is a potentially devastating complication of treatment for developmental dysplasia of the hip (DDH). AVN most commonly occurs following operative management by closed (CR) or open reduction (OR). This occurrence has frequently been examined in single centre, retrospective studies, however, little high-level evidence exists to provide insight on potential risk factors. The purpose of this observational, prospective multi-centre study was to identify predictors of AVN following operatively-managed DDH. A multi-centre, prospective database of infants diagnosed with DDH from 0–18 months was analyzed for patients treated by CR and/or OR. At minimum one year follow-up, the incidence of AVN (Salter criteria) was determined from AP pelvis radiographs via blinded assessment and consensus discussion between three senior paediatric orthopaedic surgeons. Patient demographics, clinical exam findings and radiographic data were assessed for potential predictors of AVN. A total of 139 hips in 125 patients (102 female, 23 male) underwent CR/OR at a median age of 10.4 months (range 0.7–27.9). AVN was identified in 37 cases (26.6% incidence) at a median 23 months post-surgery. Univariate logistic regression analysis comparing AVN and no AVN groups identified sex, age at diagnosis, age at surgery, pre-surgery IHDI grade and time between diagnosis and surgery as potential predictive factors. Specifically, male sex (OR 2.21 [0.87,5.72]), IHDI grade IV, and older age at diagnosis (7.4 vs. 9.5 months) and surgery (10.2 vs. 13.6 months) were associated with development of AVN. Likewise, increased time between diagnosis and surgery (2.9 vs. 5.5 months) was also associated with a higher incidence. No association was found with surgery type (CR vs. OR), pre-surgery acetabular index or surgical hip. Development of AVN occurred in 26.6% of hips undergoing CR or OR at a median 23 months post-surgery. Male sex, older age at diagnosis and surgery, dislocation severity and increased time between diagnosis and surgery were associated with AVN. Longer-term follow-up and larger numbers will be required to confirm these findings. Early outcomes from this prospective patient cohort suggest that AVN is an important complication of operative management for DDH, and appears to occur at a comparable rate whether the reduction is performed open or closed. Male patients may be more susceptible to developing AVN and merits further
In the vast majority of patients, the anatomical and mechanical axes of the tibia in the coronal plane are widely accepted to be equivalent. This philosophy guides the design and placement of orthopaedic implants within the tibia and in both the knee and ankle joints. However, the presence of coronal tibial bowing may result in a difference between these two axes and hence cause suboptimal placement of implanted prostheses. Although the prevalence of tibial bowing in adults has been reported in Asian populations, to date no
We have looked at a single surgeons results for hip abductor repair in a population of patients and assessed them pre and post operatively. We collected data over a 2 year period and each patient underwent a telephone consultation and were scored both pre operatively and post operatively using the non-arthritic hip score (NAHS) and UCLA activity score (UCLA). A total of 15 patients were included in the study over a 2 year period. 93% underwent some form of investigation prior to surgery. Intra-operatively all patients were found to have pathological abductors. 9 patients were found to have partial avulsions of the abductors and the other 6 had under surface tears or detachments. The mean preoperative NAHS was 35.7/80 and >3/12 post operatively was 68.8/80 (p value <0.001). The mean preoperative UCLA score was 3.1/10 and >3/12 post operatively was 6.6/10 (p value <0.001). There is a statistically significant improvement in the NAHS of these patients as early as 3/12 and therefore early
Spine surgery is common and costly. Researchers and policy makers believe that utilization of spine surgery in the US is significantly higher than in other industrialized countries. Although within-country variation in spine surgery utilization is well studied, there has been little
Introduction. Initial stability of cementless total knee arthroplasty (TKA) tibial trays is necessary to facilitate biological fixation. Previous experimental and computational studies describe a dynamic loading micromotion test used to evaluate the initial stability of a design. Experimental tests were focused on cruciate retaining (CR) designs and walking gait loading. A FEA computational study of various constraints and activities found CR designs during walking gait experienced the greatest micromotion. This experimental study is a continuation of testing performed on CR and walking gait to include a PS design and stair descent activity. Methods. The previously described experimental method employed robotic loading informed by a custom computational model of the knee. Different TKA designs were virtually implanted into a specimen specific model of the knee. Activities were simulated using in-vivo loading profiles from instrumented tibia implants. The calculated loads on the tibia were applied in a robotic test. Anatomically designed cementless tibia components were implanted into a bone surrogate. Micromotion of the tray relative to the bone was measured using digital image correlation at 10 locations around the tray. Three PS and three CR samples were dynamically loaded with their respective femur components with force and moment profiles simulating walking gait and stair descent activities. Periods of walking and stair descent cycles were alternated for a total of 2500 walking cycles and 180 stair descent cycles. Micromotion data was collected intermittently throughout the test and the overall 3D motion during a particular cycle calculated. The data was normalized to the maximum micromotion value measured throughout the test. The experimental data was evaluated against previously reported computational finite element model of the micromotion test. Results. The maximum average micromotion was on the CR design during walking gait. The greatest CR micromotion during stair descent was 67% of the maximum. The maximum micromotion in the PS design was 55% of the CR walking maximum and occurred during stair descent. The next highest PS value was 52% during walking. The absolute difference in these values was under 3 µm. The majority of the PS micromotion values around the tray were less than 50% that of the maximum micromotion of the CR design. Discussion. The experimental continuation of this investigation into cementless tray stability aligned with computational results in this model. The computational model predicted the PS tray would have 50% of the micromotion of the CR design, which was close to the experimental test. For CR, the computational rank order for walking and stair descent was also the same in the experimental follow-up. Future work in this investigation will include continued validation of the computational and experimental models, including more designs. Further
Early large treatment effects can arise in small studies, which lessen as more data accumulate. This study aimed to retrospectively examine whether early treatment effects occurred for two multicentre orthopaedic randomized controlled trials (RCTs) and explore biases related to this. Included RCTs were ProFHER (PROximal Fracture of the Humerus: Evaluation by Randomisation), a two-arm study of surgery versus non-surgical treatment for proximal humerus fractures, and UK FROST (United Kingdom Frozen Shoulder Trial), a three-arm study of two surgical and one non-surgical treatment for frozen shoulder. To determine whether early treatment effects were present, the primary outcome of Oxford Shoulder Score (OSS) was compared on forest plots for: the chief investigator’s (CI) site to the remaining sites, the first five sites opened to the other sites, and patients grouped in quintiles by randomization date. Potential for bias was assessed by comparing mean age and proportion of patients with indicators of poor outcome between included and excluded/non-consenting participants.Aims
Methods
The evidence base within trauma and orthopaedics has traditionally favoured quantitative research methodologies. Qualitative research can provide unique insights which illuminate patient experiences and perceptions of care. Qualitative methods reveal the subjective narratives of patients that are not captured by quantitative data, providing a more comprehensive understanding of patient-centred care. The aim of this study is to quantify the level of qualitative research within the orthopaedic literature. A bibliometric search of journals’ online archives and multiple databases was undertaken in March 2024, to identify articles using qualitative research methods in the top 12 trauma and orthopaedic journals based on the 2023 impact factor and SCImago rating. The bibliometric search was conducted and reported in accordance with the preliminary guideline for reporting bibliometric reviews of the biomedical literature (BIBLIO).Aims
Methods
Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles ( Cite this article:
We present seven patients with recurrent haemarthroses after total knee arthroplasty, caused by an inherent platelet function defect. These patients developed painful knee swelling, persistent bleeding and/or wound breakdown, a platelet factor 3 availability defect being identified in all cases. Surgical
The aim of this study was to develop and evaluate machine-learning-based computerized adaptive tests (CATs) for the Oxford Hip Score (OHS), Oxford Knee Score (OKS), Oxford Shoulder Score (OSS), and the Oxford Elbow Score (OES) and its subscales. We developed CAT algorithms for the OHS, OKS, OSS, overall OES, and each of the OES subscales, using responses to the full-length questionnaires and a machine-learning technique called regression tree learning. The algorithms were evaluated through a series of simulation studies, in which they aimed to predict respondents’ full-length questionnaire scores from only a selection of their item responses. In each case, the total number of items used by the CAT algorithm was recorded and CAT scores were compared to full-length questionnaire scores by mean, SD, score distribution plots, Pearson’s correlation coefficient, intraclass correlation (ICC), and the Bland-Altman method. Differences between CAT scores and full-length questionnaire scores were contextualized through comparison to the instruments’ minimal clinically important difference (MCID).Aims
Methods
Significant advances in perioperative pain management, such as multimodal periarticular injection, and subtler advances in surgical technique have resulted in improved postoperative experiences for patients with less pain, earlier rehabilitation, and shorter stays in hospital. Concurrently, and by applying the learnings from above, significant advances have been made in unicompartmental knee arthroplasty care pathways leading to safe programs for outpatient surgery. A natural extension of this process has been the