Advertisement for orthosearch.org.uk
Results 1 - 20 of 121
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 10 - 10
1 Apr 2017
Tan Z Ng Y Yew A Poh C Koh J Morrey B Sen H
Full Access

Introduction. The epicondylar axis of the elbow is a surface anatomical approximation of the true flexion-extension (F-E) axis used in the application of an external fixator/elbow arthroplasty. We hypothesise that the epicondylar axis coincides with the true F-E axis in terms of both angular displacement and position (ie. offset). This suggests that it can serve as a good landmark in total dynamic external fixator application and elbow arthroplasty. Methods. Three-dimensional elbow models were obtained through manual segmentation and reconstruction from 142±40 slices of CT scans per elbow in 15 cadeveric specimens. Epicondylar axis was defined to be the axis through the 2 epicondyles manually identified on the elbow models. F-E axis was defined to be the normal of a circle fitted on 20 points identified on the trochlear groove. The long axis of the elbow was identified through a line fit through the center of the distal humerus on several slices along the elbow CT. Angle between the long axis and epicondylar axis was measured. Angular deviation of the epicondylar axis and the F-E axis was calculated in reference to the long axis. All axes were projected onto the orthogonal planes on the elbow CTs and all measurements were repeated. Angular differences in the axial, saggital and coronal planes are described in internal/external rotation, flexion/extension and valgus/varus respectively. Offset in the axial and coronal planes are described in the following directions respectively: proximal/distal and anterior/posterior respectively. Comparisons between angles were performed using student's t-test. Results. Angle between the long axis and the epicondylar axis in our study (85.9±5.30) was not significantly different when compared to an existing study (87.3±2.80) (p=0.327). The epicondylar axis deviates from the true F-E axis by 1.9±4.50 (p=0.523) in flexion, 2.1±3.40 (p=0.442) varus, and 0.5±2.70 (p=0.851) in external rotation with an overall angular deviation of 2.2±4.80 (p=0.204). There was no statistical significance difference in the angle deviations mentioned. The offset between the epicondylar axis and the F-E axis was 15.6±3.4 mm anterior and 9.4±2.9 mm distal with an overall offset of 17.6±2.5 mm. Discussion. Our study demonstrated small and statistically insignificant angular difference between the epicondylar axis and the F-E axis. However, offset between the axes exists and may be clinically significant. When the epicondylar axis is used as an approximation to the natural F-E axis, this offset may introduce a moment on elbow flexion resulting in additional strain on the elbow collateral ligaments and dynamic external fixators. Implications of this as well as ligament balancing and implant stress-strain patterns in elbow arthroplasty merit further research with potential modification of technique and jigs. Significance. Although the angular difference between between the epicondylar and F-E axes was not statistically significant, an offset between the axes exist. Further research is required to elucidate its impact and the need for modification on elbow implants and external fixators


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 104 - 104
1 May 2016
Osano K Nagamine R Takayama M Kawasaki M
Full Access

Objective. The aim of this study was to evaluate the shape of patella relative to the femoral epicondylar axis and to find sex differences. Materials and methods. Computed tomography (CT) images of 100 knees with tibiofemoral osteoarthritis in 100 patients were prospectively collected. All patients were diagnosed as varus-type osteoarthritis with no destructive patellar deformity. Fifty patients were male and 50 female. The average male age was 70.8±14.6 (mean ± SD) years and the average female age was 73.3±6.7 years. Forty nine knees were right and 51 knees were left. The average height of males was 162.6±7.4 cm and that of females 149.6±5.7 cm. Males were significantly taller than females. The CT scan was performed with 2mm-interval slices in the vertical plane to the long axis of femoral shaft. Every CT image was examined to determine the maximum distance between the medial and lateral femoral epicondyle (inter-epicondylar distance, IED) along the epicondylar axis. The maximum patellar width and thickness were also measured at the image which had these maximum distances, while patellar cartilage thickness in anteroposterior diameter was not measured in this study. For evaluating the patellar size, each measured value was divided by IED and calculated each ratio. The ratio of patellar width to patellar thickness was also calculated. All parameters were compared between males and females. Statistical software Statview ver.5.0 (SAS Institute Inc.) was used for all analyses with significance being set at the 5% level. Results. Measured values are presented on Table 1. The average IED, patellar width and patellar thickness of males were all significantly larger than those of females. As shown in Table 2, by contrast, each ratio to IED was almost the same between the sexes and there were no significant differences. The ratio of patellar width to patellar thickness was 46.7±2.6% in males and 46.6±2.9% in females. Discussion. Although some studies have assessed the actual measurement values of patella, no prior study, to our knowledge, has morphologically evaluated the patella relative to the femur. This is the first study to investigate the configuration and location of patella relative to femoral epicondylar axis. Our results showed the configuration of patella relative to the femoral epicondylar axis was the same between sexes. The patellar width is approximately 56% and TGD is approximately 39% of IED. The most common complications after the surgery are related to patellofemoral problems. The ideal thickness of the resurfaced patella has not been clearly investigated. Patellar disabilities are associated with both decreased and increased patellar thickness— a thin patella could lead to anteroposterior patellar instability and a thick patella could increase the risk of stiffness of the knee and patellar subluxation. Therefore, it is desirable to restore the original patellar thickness during surgery. The results of current study showed that the ratio of patellar width to the patellar thickness was about 47%, which is useful to determine the thickness of patella during surgeries for severely damaged knees or revision surgeries


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 322 - 322
1 Mar 2004
Chauhan S Clark G Lloyd S
Full Access

Introduction: The epicondylar axis is often cited as a guide to rotation of the femoral component in total knee arthroplasty. Our aimwas to accurately identify with digital palpation, the epicondyles in 14 cadaveric knees Method: Each cadaveric knee had a midline parapatellar approautil ch and the patella was everted. The epicondyles where palpated and the position of the epicondyles was marked by inserting a pin in each epicondyle. All cadavers had a CT scan to identify the position of the epicondyles and pins. The angular difference was calculated with computer-guided measurements. Results: Of the seven right knees, þve had perfect epicondylar identiþcation, whilst two had inaccurate placement of pins. In both cases of error the medial epicondyle had a sulcus conþguration as opposed to a prominent ridge. This resulted in internal rotation of 2 degrees and 3 degrees. Of the seven left knees, þve had perfect epicondylar identiþcation, whilst two had inaccurate pin placement. In both cases this was inaccurate placement of the medial epicondylar pin in a sulcus conþguration. In both this resulted in extra external rotation of the component to 6 degrees. Overall four out of 14 knees had inaccurate placement and in each the medial epicondyle had a sulcus conþguration


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 286 - 286
1 Mar 2013
Nochi H Abe S Ruike T Kobayashi H Ito H
Full Access

Introduction. The assumption that symmetric extension-flexion gaps improve the femoral condyle lift-off phenomenon and the patellofemoral joint congruity in total knee arthroplasty (TKA) is now widely accepted. Conventional understanding of knee kinematics suggests that the femoral component should be rotationally aligned parallel to the surgical epicondylar axis (SEA). On the other hand, the theory of the balanced gap technique suggests the knee be balanced in extension and flexion to achieve proper kinematics and stability of the knee without reference to fixed bony landmarks. The purpose of our study was to evaluate the relationship between rotation alignment of the femoral component and postoperative flexion gap balance, and the femoral rotational alignment in relation to the tibial mechanical axis in patients when implanted using a balanced gap technique. Materials and Methods. The subjects presented 53 consecutive osteoarthritic (OA) varus knees underwent primary Posterior-Stabilised (PS) -TKA (NexGen LPS-flex, Zimmer). All subjects completed written informed consent. The patient population was composed of 7 men and 35 women with a mean age of 72.5 ± 8.3 years. The average height, weight, BMI, weight-bearing FTA, and the patella height (Insall-Salvati ratio: T/P ratio) were 151.7 ± 7.7 cm, 62.6 ± 11.8 kg, 27.2 ± 4.5, 184.9 ± 5.9° and 0.93 ± 0.14 respectively. All procedures were performed through a medial parapatellar approach and a balanced gap technique used a newly developed versatile tensor device which can measure the medial and lateral gaps individually and make use of the balanced gap technique guide with patellofemoral joint reduction, which had been introduced in 56. th. ORS 2010. Pre- and post-operatively, a condylar twist angle (CTA) was evaluated using computed tomography (CT). To assess the postoperative flexion gap balance, a condylar lift-off angle (LOA) was evaluated using the epicondylar view radiographs by adding a 1.5 kg weight at the ankle. Coronal alignment of the tibial component in reference to the tibial mechanical axis (angle θ) was evaluated using plain AP radiography. Data were expressed as mean ± SD and analysed with Stat View version 5.0. Results. Extension gap was well balanced within 3 mm in all cases. The average of the preoperative CTA, the postoperative CTA, the LOA and the angle θ. were 6.0 ± 1.5°, 1.2 ± 2.4°, 0.8 ± 1.4° and 89.7 ± 1.2° respectively. No significant correlation was observed in between the postoperative CTA, the LOA and the angle θ. The degree of the clinical epicondylar axis (CEA) to the tibial machanical axis was 90.1 ± 2.9°. Only one knee needed lateral retinaculum release, because of poor patella tracking evaluated by no thumb test or one stitch method. Discussion. This study demonstrated that our balanced gap technique, using a newly developed tensor device, achieved good patellofemoral joint congruity and balanced flexion gaps postoperatively. Rotation alignment of the femoral component was slight internal rotation in reference to the CEA but not parallel to the SEA. Conclusion. The CEA was perpendicular to the tibial mechanical axis in PS-TKA with well balanced extension-flexion gap achieved by a balanced gap technique


Introduction. A femoral rotational alignment is one of the essential factors, affecting the postoperative knee balance and patellofemoral tracking in total knee arthroplasty (TKA). To obtain an adequate alignment, the femoral component must be implanted parallel to the surgical epicondylar axis (SEA). We have developed “a superimposable Computed Tomography (CT) scan-based template”, in which the SEA is drawn on a distal femoral cross section of the CT image at the assumed bone resection level, to determine the precise SEA. Therefore, the objective of this study was to evaluate the accuracy of the rotational alignment of the femoral component positioned with the superimposed template in TKA. Patients and methods. Twenty-six consecutive TKA patients, including 4 females with bilateral TKAs were enrolled. To prepare a template, all knees received CT scans with a 2.5 mm slice thickness preoperatively. Serial three slices of the CT images, in which the medial epicondyle and/or lateral epicondyle were visible, were selected. Then, these images were merged into a single image onto which the SEA was drawn. Thereafter, another serial two CT images, which were taken at approximately 9 mm proximal from the femoral condyles, were also selected, and the earlier drawn SEA was traced onto each of these pictures. These pictures with the SEA were then printed out onto transparent sheets to be used as potential “templates” (Fig. 1-a). In the TKA, the distal femur was resected with the modified measured resection technique. Then, one template, whichever of the two potential templates, was closer to the actual shape, was selected and its SEA was duplicated onto the distal femoral surface (Fig. 1-b). Following that, the distal femur was resected parallel to this SEA. The rotational alignment of the femoral component was evaluated with CT scan postoperatively. For convention, an external rotation of the femoral component from the SEA was given a positive numerical value, and an internal rotation was given a negative numerical value. Results. The subjects were 4 knees in 4 males and 26 knees in 22 females. A mean age (for 30 knees) at the operation was 76.7 ± 6.1 years (range from 66.4 to 88.3). The posterior condylar angle was −0.27 ± 1.43, and the outlier, more than 3 degrees, was 1 case. Discussion. Conventionally, the SEA is palpated intraoperatively, however, the sulcus of the medial condyle sometimes cannot be identified precisely in osteoarthritic degeneration at the medial condyle. Also, the SEA is determined from the posterior condylar axis (PCA) by calculating the posterior condylar angle, which is between the SEA and the PCA, with the measurements from the preoperative CT scan. However, the residual cartilage thickness is not considered in this method, and thus, the SEA is possible to be inaccurate. The simple technology of our template allowed us to determine the SEA directly on the femoral surface, without any influence from bone degeneration. The femoral components could be implanted accurately, and therefore, the superimposed template was considered to improve TKA outcomes with the accurate SEA


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 560 - 561
1 Aug 2008
McConnell J Dillon J Clarke J Picard F Gregori A
Full Access

The accuracy of measurement in computer-assisted total knee arthroplasty is dependent on the quality of data acquisition at the start of the procedure; errors in landmark identification could lead to misalignment and therefore poorer longterm outcomes.

Some navigation systems require the surgeon to explicitly identify the femoral epicondyles in order to calculate the trans-epicondylar axis, whereas other systems are able to interpolate the epicondylar location based on a number of points acquired from the distal femoral surface. Significant inter-observer variability in landmark identification has been previously reported in dry bone studies. The purpose of this study was to test the accuracy of identification of the epicondyles during a simulated total knee replacement on a fresh cadaveric specimen.

An unfixed fresh cadaveric left lower limb was used to perform a navigated total knee replacement using the Orthopilot® (B|Braun-Aesculap, Tuttlingen, Germany) image-free navigation system.

Sixteen surgeons attending an advanced navigation training course were invited to take part. A single consultant surgeon performed initial dissection and pin placement, up to the point of landmark acquisition. Each subject was then asked to use a pointer tool to identify the medial and lateral epicondyles, as they would in an operative situation. Data were recorded by the Orthopilot® system, and exported as a 3D array for further analysis.

Initial visualisation with a 3D scatter plot showed that points were evenly distributed within a circular pattern around each epicondyle. The length of a vector between each point on each epicondyle was calculated in turn. The maximum distances between points were 15.6mm for the medial epicondyle, and 19.9mm for the lateral epicondyle.

We then calculated the length and angulation of the trans-epicondylar axis (TEA) for each observer, equivalent to the vector between each pair of points (medial and lateral epicondyle). An average TEA was calculated, and the range and standard deviation of angulation were determined. In the x axis the range was 16.3° (–8.3° to 7.9°, SD 5.1°), in the y axis the range was 18.7° (–8.7° to 10°, SD 5.2°) and in the z axis the range was 20.5° (–10.1° to 10.4°, SD 6.5°). Range of recorded TEA length was 64.5 to 74.9mm (mean 70.6mm, SD 3.3mm).

We conclude that in this simulated operative scenario, surgeons exhibited considerable variability when locating the epicondyles. Range of angulation of the TEA exceeded 16° (SD > 5.1°) in all 3 planes. We cannot recommend the use of a trans-epicondylar axis determined from 2 single points, as a reliable landmark in navigated total knee replacement.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 929 - 936
22 Oct 2024
Gutierrez-Naranjo JM Salazar LM Kanawade VA Abdel Fatah EE Mahfouz M Brady NW Dutta AK

Aims

This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA).

Methods

This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1637 - 1640
1 Dec 2012
Clark DA Upadhyay N Gillespie G Wakeley C Eldridge JD

Ensuring correct rotation of the femoral component is a challenging aspect of patellofemoral replacement surgery. Rotation equal to the epicondylar axis or marginally more external rotation is acceptable. Internal rotation is associated with poor outcomes. This paper comprises two studies evaluating the use of the medial malleolus as a landmark to guide rotation. We used 100 lower-leg anteroposterior radiographs to evaluate the reliability of the medial malleolus as a landmark. Assessment was made of the angle between the tibial shaft and a line from the intramedullary rod entry site to the medial malleolus. The femoral cut was made in ten cadaver knees using the inferior tip of the medial malleolus as a landmark for rotation. Rotation of the cut relative to the anatomical epicondylar axis was assessed using CT. The study of radiographs found the position of the medial malleolus relative to the tibial axis is consistent. Using the inferior tip of the medial malleolus in the cadaver study produced a mean external rotation of 1.6° (0.1° to 3.7°) from the anatomical epicondylar axis. Using the inferior tip of the medial malleolus to guide the femoral cutting jig avoids internal rotation and introduces an acceptable amount of external rotation of the femoral component


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 7 - 7
1 Mar 2008
Chauhan S Scott R Clark G Beaver R
Full Access

This study was to assess the accuracy of fixed posterior condylar referencing cutting blocks to the accuracy of combined epicondylar/AP axis referencing in femoral component rotation using a computer navigation system. Seventy-five consecutive patients undergoing TKRs were randomized into two groups. The first received femoral component rotation by a computerized method that combined the epicondylar axis and Whitesides AP axis measurements to determine rotation. The second group had a zero or three-degree posterior referencing external rotation block, depending on which was closest to the epicondylar axis. All patients underwent axial CT scans of the distal femur to determine component rotation around the surgical epicondylar axis. Femoral component alignment with the combined method as compared to fixed posterior alignment guides is statistically improved (p=0.001). In the posterior referencing group 43% were correctly rotated to the epicondylar axis but another 43% were malrotated by 3 degrees or more. The mean malrotation was 1.72 degrees (range 0–5) In the combined group 82% were correctly rotated and 11% were malrotated by 3 degrees or more. The mean malrotation was 0.51 degrees (range 0–4). Conclusion: A combined computerized method of using the surgical epicondylar axis and Whitesides AP axis produces superior results when aiming for neutral femoral component rotation. Fixed posterior referencing blocks will produce errors in malrotation in over 50% of cases


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 868 - 873
1 Jul 2020
Yang G Dai Y Dong C Kang H Niu J Lin W Wang F

Aims. The purpose of this study was to explore the correlation between femoral torsion and morphology of the distal femoral condyle in patients with trochlear dysplasia and lateral patellar instability. Methods. A total of 90 patients (64 female, 26 male; mean age 22.1 years (SD 7.2)) with lateral patellar dislocation and trochlear dysplasia who were awaiting surgical treatment between January 2015 and June 2019 were retrospectively analyzed. All patients underwent CT scans of the lower limb to assess the femoral torsion and morphology of the distal femur. The femoral torsion at various levels was assessed using the a) femoral anteversion angle (FAA), b) proximal and distal anteversion angle, c) angle of the proximal femoral axis-anatomical epicondylar axis (PFA-AEA), and d) angle of the AEA–posterior condylar line (AEA-PCL). Representative measurements of distal condylar length were taken and parameters using the ratios of the bianterior condyle, biposterior condyle, bicondyle, anterolateral condyle, and anteromedial condyle were calculated and correlated with reference to the AEA, using the Pearson Correlation coefficient. Results. The femoral torsion had a strong correlation with distal condylar morphology. The FAA was significantly correlated with the ratio of the bianterior condyle (r = 0.355; p = 0.009), the AEA-PCL angle (r = 0.340; p = 0.001) and the ratio of the anterolateral condyle and lateral condyle (ALC-LC) (r = 0.309; p = 0.014). The PFA-AEA angle was also significantly correlated with the ratio of the bianterior condyle (r = 0.319; p = 0.008), the AEA-PCL angle (r = 0.231; p = 0.031), and the ratio of ALC-LC (r = 0.261; p = 0.034). In addition, the bianterior condyle ratio showed a significant correlation with the biposterior condyle ratio (r = -0.324; p = 0.027) and the AEA-PCL angle (r = 0.342; p = 0.021). Conclusion. Increased femoral torsion correlated with a prominent anterolateral condyle and a shorter posterolateral condyle compared with the medial condyle. The deformities of the anterior and posterior condyles are combined deformities rather than being isolated and individual deformities in patients with trochlear dysplasia and patella instability. Cite this article: Bone Joint J 2020;102-B(7):868–873


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 270 - 271
1 Jul 2008
HERNIGOU P MANICOM O POIGNARD A MATHIEU G FILIPPINI P DE MOURA A
Full Access

Purpose of the study: The aim of this study was to analyze rotation of the normal and prosthetic distal femur as well as the spaces from 90 to 130 degrees flexion. Material and methods: Torsion scans were obtained preoperatively and postoperatively for 44 total knee prostheses. The difference in femoral torsion between the pre- and postoperative image was used to assess the rotation in which the femoral component was implanted. The prostheses were divided into two groups: group I when the femoral implant was implanted with external rotation of more than 5°; group II when the femoral implant was implanted with external rotation less than 5°. A preoperative stress scan was obtained in 20 patients then repeated during the year following implantation. Stress images with knee flexion at angles from 90° to 130° were obtained. The patient was installed in the ventral supine position. 8mm scan slices were centered on the lower end of the femur, ten 50ms images were acquired during flexion movement from 90° to 130°. This enabled determination of the knee flexion axis preoperatively and postoperatively, to measure the variation in the epicondylar axis compared with the mechanical axis of the tibia between 90° and 130° flexion and finally to deduct change in the femorotibial space in flexion from 90° to 130°. Results: The 18 total knee prostheses with a femoral component implanted with external rotation greater than 5° (group I) showed significantly greater range of flexion (p< 0.05) (mean 120°, range 110°–130°) than the 26 prostheses in group II with a femoral component implanted in external rotation less than 5° (mean 100°, range 80°–115°. For the 20 knees with stress scans, the preoperative images showed an epicondylar axis about 5° fro the mechanical axis of the tibia when the knee flexed in the 90°–130° range. After surgery, the stress scans showed that this epicondylar axis of rotation of the prosthesis-bearing knees occurred especially for knees with a wide range of flexion. The 20 knees with flexion limited to 100° did not present an epicondylar rotation axis compared with the mechanical axis of the tibia. The 15 knees with 125° flexion or more had an epicondylar axis of rotation after 90° flexion. Rotation of the epicondylar axis in relation to the mechanical axis of the tibia between 90° and 130° flexion was the consequence of a femorotibial space which changed in the medial and laeral femorotibial compartments between 90° and 130° flexion: after 90° flexion, the medial femorotibial space decreased and the lateral femorotibial space increased. This explains why movement from 90° flexion to 130° flexion was facilitated by placing the femoral piece in external rotation. Discussion: Search for ligament balance for knee flexion above 90° is logical only if the goal is to obtain knee stability in extension and flexion at 90°. It is probably no rational if the goal is to allow the knee to reach flexion in the 120°–130° range. Ligament balance in flexion above 90° is important and should be maintained up through 130° flexion. The other solution is to empirically increase external rotation of the femoral component a few degrees in order to allow greater range of flexion


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 10 - 10
1 Jun 2012
Baldini A Mariani PC Manfredini L Luca LD
Full Access

The anterior curve of the tibial plateau cortex represents a realiable and reproducible landmark which may help aligning the tibial component with the femoral component and the extensor mechanism. Few studies analyzed the tibial component rotational alignment during total knee arthroplasty. Malrotation can affect both patello-femoral and tibio-femoral postoperative function. We evaluated the rotational relationship between femur and tibia, and we investigated which tibial landmark consistently matches the rotation of the femoral epicondylar axis in full extension (Fig 1). Axial magnetic resonance images of 124 normal knees (statistical power 1-beta=0.8) were analyzed separately by three authors. Scanograms were obtained with the knee in full extension and with the long axis of the foot (second metatarsal bone) aligned on the neutral sagittal plane. The surgical epicondylar axis was drawn and projected over the proximal tibia and tibial tuberosity slices. Multiple anatomical tibial rotational landmarks were drawn and symmetric tibial component digital templates of different sizes were aligned according to each landmark. Alignment of the virtual tibial components was then compared to that of the projected femoral epicondylar axis (Fig 2). The best antero-posterior line to achieve rotational matching between the components was drawn on the proximal tibia slice of each patient. Results of rotation (positive = external rotation, negative = internal) relative to the epicondylar axis were (Fig 3): (a) Medial third-to the middle third of the tibial tubercle 1.2°+/−5.7, (b) Akagi's line (centre of the posterior cruciate ligament tibial insertion to the most medial part of the tibial tubercle) -11.5+/−6.5, (c) The anterior curved tibial plateau cortex (curve-on-curve matching between the tibial template and the anterior cortex) 1.0+/−2.9. Intraclass correlation coefficient resulted 0.923, 0,881, and 0.949 for the Akagi's line, Middle third of tibial tubercle, and the curve-on-curve reference respectively. The anterior curve of the tibial plateau cortex represents a realiable and reproducible landmark which may help aligning the tibial component with the femoral component and the extensor mechanism (Fig 4, 5)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 10 - 10
1 Feb 2020
Vendittoli P Blakeney W Puliero B Beaulieu Y Kiss M
Full Access

INTRODUCTION. Mechanical alignment in TKA introduces significant anatomic modifications for many individuals, which may result in unequal medial-lateral or flexion-extension bone resections. The objective of this study was to calculate bone resection thicknesses and resulting gap sizes, simulating a measured resection mechanical alignment technique for TKA. METHODS. Measured resection mechanical alignment bone resections were simulated on 1000 consecutive lower limb CT-Scans from patients undergoing TKA. Bone resections were simulated to reproduce the following measured resection mechanical alignment surgical technique. The distal femoral and proximal tibial cuts were perpendicular to the mechanical axis, setting the resection depth at 8mm from the most distal femoral condyle and from the most proximal tibial plateau (Figure 1). If the resection of the contralateral side was <0mm, the resection level was increased such that the minimum resection was 0mm. An 8mm resection thickness was based on an implant size of 10mm (bone +2mm of cartilage). Femoral rotation was aligned with either the trans-epicondylar axis or with 3 degrees of external rotation to the posterior condyles. After simulation of the bone cuts, media-lateral gap difference and flexion-extension gaps difference were calculated. The gap sizes were calculated as the sum of the femoral and tibial bone resections, with a target bone resection of 16mm (+ cartilage corresponding to the implant thickness). RESULTS. For both the varus and valgus knees, the created gaps in the medial and lateral compartments were reduced in the vast majority of cases (<16mm). The insufficient lateral condyle resection distalises the lateral joint surface by a mean of 2.1mm for the varus and 4.4mm for the valgus knees. The insufficient medial tibial plateau resection proximalises the medial joint surface by 3.3mm for the varus and 1.2mm for the valgus knees. Medio-lateral gap imbalances in the extension space of more than 2mm) occurred in 25% of varus and 54% of valgus knees and significant imbalances of more than 5mm were present in up to 8% of varus and 19% of valgus knees. Higher medio-lateral gap imbalances in the flexion space were created with trans epicondylar axis versus 3 degrees to the posterior condyles (p<0.001). Using trans epicondylar axis, only 49% of varus and 18% of valgus knees had less than 3mm of imbalance in both media-lateral and flexion-extension gaps together. DISCUSSION AND CONCLUSION. A systematic use of the tested measured resection mechanical alignment technique for TKA leads to many cases with medio-lateral or flexion-extension gap asymmetries. Some medio-lateral imbalances may not be correctable surgically and may results in TKA instability. Other versions of the mechanical alignment technique or other alignment methods that better reproduce knee anatomies should be explored. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 71 - 71
1 May 2014
Whiteside L
Full Access

The cornerstone to proper ligament balancing in TKR is correct varus and valgus alignment in flexion and extension. For alignment in the extended position, fixed anatomic landmarks such as the intramedullary canal of the femur and long axis of the tibia are accepted. When the joint surface is resected at an angle of 5 degrees to 7 degrees valgus to the medullary canal of the femur and perpendicular to the long axis of the tibia, the joint surfaces are perpendicular to the mechanical axis of the lower extremity, and roughly parallel to the epicondylar axis. In the flexed position, anatomic landmarks are equally important for varus-valgus alignment. Incorrect varus-valgus alignment in flexion not only malaligns the long axes of the femur and tibia, but also incorrectly positions the patellar groove both in flexion and extension. Finding suitable landmarks for varus-valgus alignment has led to efforts to use the posterior femoral condyles, epicondylar axis, and anteroposterior (AP) axis of the femur. The posterior femoral condyles provide excellent rotational alignment landmarks if the femoral joint surface has not been worn or otherwise distorted by developmental abnormalities or the arthritic process. However, as with the distal surfaces, the posterior femoral condylar surfaces sometimes are damaged or hypoplastic (more commonly in the valgus than in the varus knee) and cannot serve as reliable anatomic guides for alignment. The epicondylar axis is anatomically inconsistent and in all cases other than revision total knee arthroplasty with severe bone loss, is unreliable for varus-valgus alignment in flexion just as it is in extension. The AP axis, defined by the lateral border of the posterior cruciate ligament posteriorly and the deepest part of the patellar groove anteriorly, is highly consistent, and always lies within the median sagittal plane that bisects the lower extremity, passing through the hip, knee, and ankle. When the articular surfaces are resected perpendicular to the AP axis, they are perpendicular to the AP plane, and the extremity can function normally in this plane throughout the arc of flexion


Aim. The aim of this study is to evaluate the effect of three-dimensional (3D) simulation with 3D planning software ZedKnee® (ZK) in total knee arthroplasty (TKA). Materials and methods. The participants in this study were all TKA patients whose operations were simulated by using ZK. The alignment of all components was evaluated with the ZK valuation software in postoperative computer tomography. Thirty patients (43 knees) met the inclusion criteria. 6 patients were male and 24 patients were female. The mean age of the 30 patients was 72 years old. Diagnoses for surgery were: osteoarthritis- 40 knees, rheumatoid arthritis- 2 knees and osteonecrosis- 1 knee. TKA was performed using the measured resection technique. The distal femur axis where the intramedullary rod would be inserted was drawn manually on the 3D image. Then, the angle between the distal femoral axis and the mechanical axis was measured. The rotational angles of the femoral components were determined from the automatically calculated angle between the posterior condylar axis and the surgical epicondylar axis (SEA) by using ZK. The ZK data used during the operation was the posterior condylar angle, the angle between the distal femoral axis and the mechanical axis and implant size. Results. The angle in coronal plane between the 3D mechanical axis and the distal femoral axis in preoperative planning ranged between 3 degrees and 11 degrees, mean 6.7 (SD 2.2) degrees. The postoperative femoral component alignment was on average 0.7 (SD 1.3) degrees in varus. Outlier of more than 3 degrees in coronal alignment was recognized in 3 cases (7%). The mean posterior condylar angle in preoperative planning was 3.8 (SD 1) degrees. The postoperative femoral component alignment was on average 1.5 (SD 1.6) degrees in external rotation to surgical epicondylar axis. Outlier of more than 3 degrees in rotational alignment was recognized in 6 cases (14%). The concordance rate between the preoperative planning size and the intraoperative selective size was 91%. Discussion. Some errors may be observed in the preoperative TKA X-ray planning, because of the rotational position of the femur while having the X-ray taken or angle of the X-ray beam. Kanekasu et al reported the measurement of the condylar twist angle during the X-ray and it was relatively correct compared with the measurement during CT. Max 1.9 degrees error occurred in the measurements using X-rays. It appeared that preoperative planning using CTs was more accurate than using X-rays. Conclusion. Femoral components with 3D simulation using ZK were fixed perpendicularly against the mechanical axis and parallel to the surgical epicondylar axis with high accuracy. We considered that the ZK 3D simulation in TKA is useful for the accurate alignment of femoral components


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 70 - 70
1 May 2013
Whiteside L
Full Access

The cornerstone to correct ligament balancing is correct varus and valgus alignment in flexion and extension. For alignment in the extended position, fixed anatomic landmarks such as the intramedullary canal of the femur and long axis of the tibia are accepted. When the joint surface is resected at an angle of 5° to 7° valgus to the medullary canal of the femur and perpendicular to the long axis of the tibia, the joint surfaces are perpendicular to the mechanical axis of the lower extremity, and roughly parallel to the epicondylar axis. In the flexed position, anatomic landmarks are equally important for varus-valgus alignment. Incorrect varus-valgus alignment in flexion not only malaligns the long axes of the femur and tibia, but also incorrectly positions the patellar groove both in flexion and extension. Finding suitable landmarks for varus-valgus alignment has led to efforts to use the posterior femoral condyles, epicondylar axis, and anteroposterior (AP) axis of the femur. The posterior femoral condyles often are not reliable rotational alignment landmarks because the femoral joint surface has been worn or otherwise distorted by developmental abnormalities or the arthritic process. As with the distal surfaces, the posterior femoral condylar surfaces sometimes are damaged or hypoplastic (more commonly in the valgus than in the varus knee) and cannot serve as reliable anatomic guides for alignment. The epicondylar axis is anatomically inconsistent and in all cases other than revision total knee arthroplasty with severe bone loss, is unreliable for varus-valgus alignment in flexion just as it is in extension. The AP axis, defined by the centre of the intercondylar notch posteriorly and the deepest part of the patellar groove anteriorly, is highly consistent, and always lies within the median sagittal plane that bisects the lower extremity, passing through the hip, knee, and ankle. When the articular surfaces are resected perpendicular to the AP axis, they are perpendicular to the AP plane, and the extremity can function normally in this plane throughout the arc of flexion. Once the knee is set up in correct alignment, ligament balancing can be done with simple procedures based on basic anatomy. Anterior structures tighten in flexion, and posterior structures tighten in extension. Release of tight structures in a controlled fashion completes the aligned and balanced knee


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 327 - 327
1 May 2010
Rajagopal T Nathwani D
Full Access

Restoration of the position of the prosthetic joint line to the same level as the natural joint line, is a challenging problem in primary and revision knee arthroplasty and there is no reliable method for achieving this objective. We hypothesise that there is a constant ratio between the inter-epicondylar distance and the distance from this interepicondylar line to the joint line. We analysed one hundred Computerised Tomography (CT) scans of the knee in the non arthritic population to study this relationship. The inter-epicondylar distance and the perpendicular distance from this inter-epicondylar line to the joint line was measured using both the clinical and surgical epicondylar axes for each knee as described in previous literature. The results showed that using the clinical epicondylar axis the inter-epicondylar distance was 3 times the perpendicular distance from the inter-epicondylar line to the joint line (the median and mean ratio 3.0, Standard Deviation ±0.21). Using the surgical epicondylar axis the inter-epicondylar distance was 3.3 times the perpendicular distance from the inter-epicondylar line to the joint line (the median and mean ratio 3.3, SD ±0.25). Landmarks such as inferior pole of patella or fibular head have been used to estimate the joint line position, but these methods have been shown to be unreliable. Our method will give an accurate estimate of the position of the joint line from the clinical epicondylar axis distance. This distance is easily calculated when using Computer Navigation for the surgery in both the primary and revision setting and the modern software programmes for Computer Assisted TKR should be modified accordingly. We conclude that the position of the joint line from the inter-epicondylar line is one-third of the inter-epicondylar distance which is valuable especially when there is significant bone loss at the tibio-femoral articulation


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 52 - 52
1 Apr 2019
Knowles NK Raniga S West E Ferreira L Athwal G
Full Access

Introduction. The Walch Type B2 glenoid has the hallmark features of posteroinferior glenoid erosion, retroversion, and posterior humeral head subluxation. Although our understanding of the pathoanatomy of bone loss and its evolution in Type B's has improved, the etiology remains unclear. Furthermore, the morphology of the humerus in Walch B types has not been studied. The purpose of this imaging based anthropometric study was to examine the humeral torsion in Walch Type B2 shoulders. We hypothesized that there would be a compensatory decrease in humeral retroversion in Walch B2 glenoids. Methods. Three-dimensional models of the full length humerus were generated from computed tomography data of normal cadaveric (n = 59) and Walch Type B shoulders (n = 59). An anatomical coordinate system referencing the medial and lateral epicondyles was created for each model. A simulated humeral head osteotomy plane was created and used to determine humeral version relative to the epicondylar axis and the head-neck angle. Measurements were repeated by two experienced fellowship-trained shoulder surgeons to determine inter-rater reliability. Glenoid parameters (version, inclination and 2D critical shoulder angle) and posterior humeral head subluxation were calculated in the Type B group to determine the pathologic glenohumeral relationship. Two-way ANOVAs compared group and sex within humeral version and head-neck angle, and intra-class correlation coefficients (ICCs) with a 2-way random effects model and absolute agreement were used for inter-rater reliability. Results. There were statistically significant differences in humeral version between normal and Type B shoulders (p < .001) and between males and females within the normal group (p = .043). Normal shoulders had a humeral retroversion of 36±12°, while the Walch Type B group had a humeral retroversion of 14±9° relative to the epicondylar axis. For head-neck angle, there were no significant differences between sexes (p = .854), or between normal and Type B shoulders when grouped by sex (p = .433). In the Type B group, the mean glenoid version was 22±7°, glenoid inclination was 8±6°, 2D critical shoulder angle was 30±5° and humeral head subluxation was 80±9%. Inter-rater reliability showed fair agreement between the two experienced observers for head-neck angle (ICC = .562; 95% CI: -.28 to .809) and excellent agreement for humeral version (ICC = .962;.913 to .983). Although only fair agreement was found between observers in head-neck angle ICC, the difference in mean angle was only 2°. Discussion. Although much time and effort has been spent understanding and managing Type B2 glenoids, little attention has been paid to investigating associated humeral contributions to the Type B shoulder. Our results indicate that the humeral retroversion in Type B shoulders is significantly lower than in normals. These findings have several implications, including, helping to understanding the etiology of the B2, the unknown effects of arbitrarily selecting higher version angles for the humeral component, and the unknown effects of altered version on glenohumeral joint stability, loading and implant survivorship post-arthroplasty. Our results also raise an important question, whether it is best to reconstruct Type B humeral component version to pathologic version or to non-pathologic population means


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 21 - 21
1 Jan 2016
Aoki H
Full Access

Correct rotational alignment of the femoral component is one of the most important elements in successful total knee arthroplasty. The surgical epicondylar axis is a well-known reliable landmark for a total knee arthorplasy. However, sometimes it is difficult for surgeon to define where a sulcus is, thus, hard to define a surgical epicondylar axis during a surgery. This Study evaluated the new reference of axis “Lateral Condylar Axis (LCA)” for the distal femur. The LCA is defined by the angle between the surgical epicondyalr axis and the Lateral Condylar Axis. To evaluate the consistency of this angle through ages, genders and femoral-tibia angle, this study also measured the angles between the surgical epicondylar and the anteroposterior asix and the surgical epicondylar and the posterior condaylar axis. By evaluating out the correlations and comparing the figure between measurements using the Student test, this study suggests that the Lateral Condylar Axis is a reliable landmark to properly rotate the femoral component and is easier to define during a surgery. The 59 knees out of 41 patients data was measured in 2011 – 2012


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 32 - 32
1 Mar 2009
Murray J Sherlock M Hogan N Servant C Palmer S Parish E Cross M
Full Access

Background: The purpose of this study was to assess the anterior femoral cortical line (AFCL) as an additional anatomical landmark for determining intraoperative femoral component rotation in total knee arthroplasty. The AFCL was compared with the Epicondylar axis, the anteroposterior (AP) axis (Whiteside’s line), and the posterior condylar axis. Dry bone, cadaver, MRI and intra-operative measurements were compared. Methods: Fifty dry bone femora, and 16 wet cadaveric specimens were assessed to identify the AFCL and this was compared against the 3 reference axes discussed above. Photographs were taken of the specimens with K-wires/marker pins secured to the reference axes and then a digital on-screen goniometer was used to determine the mean angular variations with respect to the Epipcondylar axis. In the clinical trial, 58 consecutive patients undergoing total knee arthroplasty were included. After a routine exposure the AP axis was marked on each distal femur. The AFCL was then identified and the anterior femoral cortical cut was made parallel to this line. The angle between this cortical cut and the perpendicular to the AP axis was measured using a sterile goniometer. In the MRI study, 50 axial knee images were assessed and the most appropriate slice/s determined in order to identify the AFCL and the other 3 reference axes and then their relationship was measured by an on-screen goniometer. Results: In the cadaveric study the AFCL was a mean 1° externally rotated to the epicondylar axis (SD = 5°), White-side’s line was 1° externally rotated (SD = 4°) and the posterior condylar axis was 1° internally rotated (SD = 2°). By MRI and with respect to the epicondylar axis, the AFCL was a mean 5° externally rotated (SD= 3), White-side’s Line was 1° externally rotated (SD = 2) and the posterior condylar axis was 3° internally rotated (SD = 2). In the clinical study in 8 patients it was impossible to draw the AP axis because of dysplasia or destruction of the trochlea by osteoarthrosis. In the remainder the mean difference between the anterior femoral cortical line and Whiteside’s AP axis was 4.1 degrees internally rotated (SD = 3.8°). The lateral release rate for this cohort was 4%. Conclusion: The anterior femoral cortical line provides an additional reference point, completing the ‘compass points’ around the knee. It has been shown in this study to be reliable in the laboratory, on MRI and in a clinical setting for assessing rotation of the femoral component. It may prove particularly useful when one or all of the other reference axes are disturbed such as in revision TKR, lateral condylar hypoplasia or where there has been previous epicondylar trauma