Introduction.
Introduction and Aims. Clinically many factors such as variations in surgical positioning, and patients' anatomy and biomechanics can affect the occurrence and severity of
Introduction. Variations in component position can lead to dynamic separation and
Introduction.
Introduction and Aims. There are many variables that can affect the occurrence and severity of
Introduction and Aims. There are many surgical, implant design and patient factors that should be considered in preclinical testing of hip replacement which are not being considered in current standards. The aim of this study was to develop a preclinical testing method that consider surgical positioning, implant design and patient factors and predict the occurrence and severity of
Introduction.
Introduction. Increased wear rates [1, 2] and acetabular rim fracture [3] of hip replacement bearings reported clinically have been associated with
Introduction. Total ankle replacement (TAR) is less successful than other joint replacements with a 77% survivorship at 10 years. Predominant indications for revision include: Insert dislocation, soft tissue impingement and pain/stiffness. Insert edge-loading may be both a product and cause of these indications and was reported to affect 22% of patients with the, now withdrawn from market, Ankle Evolutive System (AES) TAR (Transysteme, Nimes, France). Compressive forces up to seven times body weight over a relatively small contact area (∼6.0 to 9.2 cm. 2. ), in combination with multi-directional motion potentially causes significant polyethylene wear and deformation in mobile-bearing TAR designs. Direct methods of measuring component volume (e.g. pycnometer) use Archimedes' principle but cannot identify spatial changes in volume or form indicative of wear/deformation. Quantitative methods for surface analysis bridge this limitation and may advance methods for analysing the
Introduction:. A disturbing prevalence of painful inflammatory reactions has been reported in metal-on-metal (MoM) hip resurfacing arthroplasty. A contributing factor is localized loading of the acetabular shell leading to “edge wear” which is often seen after precise measurement of the bearing surfaces of retrieved components. Factors contributing to edge wear include adverse cup orientation leading to proximity (<10 mm) of the hip reaction force to the edge of the acetabular component. As this phenomenon is a function of implant positioning and patient posture, this study was performed to investigate the occurrence of
Introduction. A disturbing prevalence of short-term failures of metal-on-metal (MoM) hip resurfacings has been reported by joint registries. These cases have been primarily due to painful inflammatory reactions and, in extreme cases, formation of pseudotumors within periarticular soft-tissues. The likely cause is localized loading of the acetabular shell leading to “edge wear” which is often seen after precise measurement of the bearing surfaces of retrieved components. Factors contributing to edge wear of metal-on-metal arthroplasties are thought to include adverse cup orientation, patient posture, and the direction of hip loading. The purpose of this study was to investigate the role of different functional activities in
Introduction. Robotically-assisted unicondylar knee arthroplasty (UKA) is intended to improve the precision with which the components are implanted, but the impact of alignment using this technique on subsequent polyethylene surface damage has not been determined. Therefore, we examined retrieved ultra-high-molecular-weight polyethylene UKA tibial inserts from patients who had either robotic-assisted UKA or UKA performed using conventional manual techniques and compared differences in polyethylene damage with differences in implant component alignment between the two groups. We aimed to answer the following questions: (1) Does robotic guidance improve UKA component position compared to manually implanted UKA? (2) Is polyethylene damage or
Ceramic-on-ceramic bearings provide a solution to the osteolysis seen with traditional metal-on-polyethylene bearings. Sporadic reports of ceramic breakage and squeaking concern some surgeons and this bearing combination can show in vivo signs of
INTRODUCTION. Squeaking after total hip replacement has been reported in up to 10% of patients. Some authors proposed that sound emissions from squeaking hips result from resonance of one or other or both of the metal parts and not the bearing surfaces. There is no reported in vitro study about the squeaking frequencies under lubricated regime. The goal of the study was to reproduce the squeaking in vitro under lubricated conditions, and to compare the in vitro frequencies to in vivo frequencies determined in a group of squeaking patients. The frequencies may help determining the responsible part of the noise. METHODS. Four patients, who underwent THR with a Ceramic-on-Ceramic THR (Trident(r), Stryker(r)) presented a squeaking noise. The noise was recorded and analysed with acoustic software (FMaster(r)). In-vitro 3 alumina ceramic (Biolox Forte Ceramtec(r)) 32 mm diameter (Ceramconcept(r)) components were tested using a PROSIM(r) hip friction simulator. The cup was positioned with a 75° abduction angle in order to achieve
The functional pelvic tilt when standing and sitting forward of 7402 cases on the OPS, Optimized Ortho, Australia Data Base were reviewed. All patients had undergone lateral radiographs when standing simulating extension of the hip, and sitting forward when the hip is near full flexion. Pelvic tilt was measured as the angle of the Anterior Pelvic Plane to the vertical Sagittal Plane, rotation anteriorly being given a positive value. Pelvises that had rotated more than 13 degrees anteriorly (+ve) when sitting forward or posteriorly (-ve) when standing were considered to place the hip at increased risk of dislocation or
Introduction. Two types of ceramic materials currently used in total hip replacements are third generation hot isostatic pressed (HIPed) alumina ceramic (commercially known as BIOLOX®forte, CeramTec) and fourth generation alumina matrix composite ceramic consisting of 75% alumina, 24% zirconia, and 1% mixed oxides (BIOLOX®delta, CeramTec). Delta ceramic hip components are being used worldwide, but very few studies have analyzed retrieved delta bearings. The aim of this study is to compare
Malpositioning still occurs in total hip arthroplasty (THA). As a result of mal-orientation, THA bearing can be subjected to
Introduction. Stripe wear, observed on retrieved ceramic hip replacements, has only been replicated in vitro under translational mal-positioning conditions where the centres of rotation of the head and the cup are mismatched. 1,2. ; an in vitro condition termed “microseparation”. The aim of this study was to compare the
Malorientation of the acetabular cup in Total Hip replacement (THR) may contribute to premature failure of the joint through instability (impingement, subluxation or dislocation), runaway wear in metal-metal bearings when the edge of the contact patch encroaches on the edge of the bearing surface, squeaking of ceramic-ceramic bearings and excess wear of polyethylene bearing surfaces leading to osteolysis. However as component malorientation often only occurs in functional positions it has been difficult to demonstrate and often is unremarkable on standard (usually supine) pelvic radiographs. The effects of spinal pathology as well as hip pathology can cause large rotations of the pelvis in the sagittal plane, again usually not recognized on standard pelvic views. While Posterior pelvic rotation with sitting increases the functional arc of the hip and is protective of a THR in regards to both