Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

INVESTIGATION OF PATIENT-SPECIFIC ACETABULAR CUP MALORIENTATION IN FUNCTIONAL POSITIONS IN THE FAILING TOTAL HIP REPLACEMENT

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 3.



Abstract

Malorientation of the acetabular cup in Total Hip replacement (THR) may contribute to premature failure of the joint through instability (impingement, subluxation or dislocation), runaway wear in metal-metal bearings when the edge of the contact patch encroaches on the edge of the bearing surface, squeaking of ceramic-ceramic bearings and excess wear of polyethylene bearing surfaces leading to osteolysis.

However as component malorientation often only occurs in functional positions it has been difficult to demonstrate and often is unremarkable on standard (usually supine) pelvic radiographs. The effects of spinal pathology as well as hip pathology can cause large rotations of the pelvis in the sagittal plane, again usually not recognized on standard pelvic views. While Posterior pelvic rotation with sitting increases the functional arc of the hip and is protective of a THR in regards to both edge loading and risk of dislocation, conversely Anterior rotation with sitting is potentially hazardous.

We developed a protocol using three functional positions – standing, supine and flexed seated (posture at “seat-off” from a standard chair). Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography.

Proprietary software (Optimized Ortho, Sydney) based on Rigid Body Dynamics then modelled the patients’ dynamics through their functional range producing a patient-specific simulation which also calculates the magnitude and direction of the dynamic force at the hip and traces the contact area between prosthetic head/liner onto a polar plot of the articulating surface. Given prosthesis specific information edge-loading can then be predicted based on the measured distance of the edge of the contact patch to the edge of the acetabular bearing.

Results and conclusions

The position of the pelvis in the sagittal plane changes significantly between functional activities. The extent of change is specific to each patient.

Spinal pathology can be an insidious “driver” of pelvic rotation, in some cases causing sagittal plane spinal imbalance or changes in orientation of previously well oriented acetabular components.

Squeaking of ceramic on ceramic bearings appears to be multi factorial, usually involving some damage to the bearing but also usually occurring in the presence of anterior or posterior edge loading. Often these components will appear well oriented on standard views [Fig 1].

Runaway wear in hip resurfacing or large head metal-metal THR may be caused by poor component design or manufacture or component malorientation. Again we have seen multiple cases where no such malorientation can be seen on standard pelvic radiographs but functional studies demonstrate edge loading which is likely to be the cause of failure [Fig 2].

Clinical examples of all of these will be shown.


Email: