Introduction. The surgical treatment of critical-sized bone defects with complex three-dimensional (3D) geometries is a challenge for the treating surgeon. Additive manufacturing such as 3D printing enables the production of highly individualized bone implants meeting the shape of the patient's bone defect and including a tunable internal structure. In this study, we showcase the
Intramedullary nails (IMNs) are the current gold standard for treatment of long bone diaphyseal and selected metaphyseal fractures. Their
Osteosarcoma is a highly malignant primary tumor of bone tissue. The 5-year survival rate of patients with metastasis is below 20% and this scenario is unchanged in the last two decades, despite great efforts in pre-clinical and clinical research. Traditional preclinical models of osteosarcoma do not consider the whole complexity of its microenvironment, leading to poor correlation between in vitro/in vivo results and clinical outcomes. Spheroids are a promising in vitro model to mimic osteosarcoma and perform drug-screening tests, as they (i) reproduce the microarchitecture of the tumor, (ii) are characterized by hypoxic regions and necrotic core as the in vivo tumor, (iii) and recapitulate the chemo-resistance phenomena. However, to date, the spheroid model is scarcely used in osteosarcoma research. Our aim is to develop a customized culture dish to grow and characterize spheroids and to perform advanced drug-screening tests. The resulting platform must be adapted to automated image acquisition systems, to overcome the drawbacks of commercial spheroids platforms. To this purpose, we
The anatomy of the femur shows a high inter-patient variability, making it challenging to
Abstract. Objectives. Young patients receiving metallic bone implants after surgical resection of bone cancer require implants that last into adulthood, and ideally life-long. Porous implants with similar stiffness to bone can promote bone ingrowth and thus beneficial clinical outcomes. A mechanical remodelling stimulus, strain energy density (SED), is thought to be the primary control variable of the process of bone growth into porous implants. The sequential process of bone growth needs to be taken into account to develop an accurate and validated bone remodelling algorithm, which can be employed to improve porous implant
Numerous papers present in-vivo knee kinematics data following total knee arthroplasty (TKA) from fluoroscopic testing. Comparing data is challenging given the large number of factors that potentially affect the reported kinematics. This paper aims at understanding the effect of following three different factors: implant geometry, performed activity and analysis method. A total of 30 patients who underwent TKA were included in this study. This group was subdivided in three equal groups: each group receiving a different type of posterior stabilized total knee prosthesis. During single-plane fluoroscopic analysis, each patient performed three activities: open chain flexion extension, closed chain squatting and chair-rising. The 2D fluoroscopic data were subsequently converted to 3D implant positions and used to evaluate the tibiofemoral contact points and landmark-based kinematic parameters. Significantly different anteroposterior translations and internal-external rotations were observed between the considered implants. In the lateral compartment, these differences only appeared after post-cam engagement. Comparing the activities, a significant more posterior position was observed for both the medial and lateral compartment in the closed chain activities during mid-flexion. A strong and significant correlation was found between the contact-points and landmarks-based analyses method. However, large individual variations were also observed, yielding a difference of up to 25% in anteroposterior position between both methods. In conclusion, all three evaluated factors significantly affect the obtained tibiofemoral kinematics. The individual implant
Vertebral metastases are the most common type of malignant lesions of the spine. Although this tumour is still considered incurable and standard treatments are mainly palliative, the standard approach consists in surgical resection, which results in the formation of bone gaps. Hence, scaffolds, cements and/or implants are needed to fill the bone lacunae. Here, we propose a novel approach to address spinal metastases recurrence, based on the use of anti-tumour metallic-based nanostructured coatings. Moreover, for the first time, a gradient microfluidic approach is proposed for the screening of nanostructured coatings having anti-tumoral effect, to determine the optimal concentration of the metallic compound that permits selective toxicity towards tumoral cells. Coatings are based on Zinc as anti-tumour agent, which had been never explored before for treatment of bone metastases. The customized gradient generating microfluidic chip was
Abstract. Objectives. Currently, total hip replacement surgery is an effective treatment for osteoarthritis, where the damaged hip joint is replaced with an artificial joint. Stress shielding is a mechanical phenomenon that refers to the reduction of bone density as a result of altered stresses acting on the host bone. Due to solid metallic nature and high stiffness of the current orthopaedic prostheses, surrounding bones undergo too much bone resorption secondary to stress shielding. With the use of 3D printing technology such as selective laser melting (SLM), it is now possible to produce porous graded microstructure hip stems to mimics the surrounding bone tissue properties. Method. In this study we have compared the physical and mechanical properties of two triply periodic minimal surface (TPMS) lattice structure namely gyroid and diamond TPMS. Based on initial investigations, it was decided to
Bone tissue engineering is a promising strategy to treat the huge number of bone fractures caused by progressive population ageing and diseases i.e., osteoporosis. The bioactive and biomimetic materials
Abstract. Background. The Oxford Domed Lateral (ODL) Unicompartmental Knee Replacement (UKR) has some advantages over other lateral UKRs, but the mobile bearing dislocation rate is high (1–6%). Medial dislocations, with the bearing lodged on the tibial component wall, are most common. Anterior/posterior dislocations are rare. For a dislocation to occur distraction of the joint is required. We have developed and validated a dislocation analysis tool based on a computer model of the ODL with a robotics path-planning algorithm to determine the Vertical Distraction required for a Dislocation (VDD), which is inversely related to the risk of dislocation. Objectives. To modify the ODL
Introduction and Objective. Kinematic Alignment (KA) is a surgical technique that restores the native knee alignment following Total Knee Arthroplasty (TKA). The association of this technique with a medial pivot implant
Biomimicry is defined as the
Physiological kinematics is very difficult to restore after total knee arthroplasty (TKA). A new model of medial stabilized (MS) TKA prosthesis has a high spherical congruence of the internal compartment, which guarantees anteroposterior (AP) stability associated with a flat surface of the insert in the lateral compartment, that allows a greater AP translation of the external condyle during knee flexion. The aim of our study is to evaluate, by dynamic radiostereometric analysis (RSA), the knee in vivo kinematics after the implantation of a MS prosthesis during sit to stand and lunge movements. To describe the in vivo kinematics of the knee after MS Fixed Bearing TKA (GMK Sphere (TM) Medacta International AG, Castel San Pietro, Switzerland) using Model Based dynamic RSA. A cohort of 18 patients (72.1 ± 7.4 years old) was evaluated by dynamic RSA 9 months after TKA. The kinematic evaluation was carried out using the dynamic RSA tool (BI-STAND DRX 2), developed at our Institute, during the execution of sit to stand and lunge movements. The kinematic data were processed using the Grood and Suntay decomposition and the Low Point method. The patients performed two motor tasks: a sit-to-stand and a lunge. Data were related to the flexion angle versus internal-external, varus-valgus rotations and antero-posterior translations of the femur with respect to the tibia. During the sit to stand, the kinematic analysis showed the presence of a medial pivot, with a significantly greater (p=0.0216) anterior translation of the lateral condyle (3.9 ± 0.8 mm) than the medial one (1.6 ± 0.8 mm) associated with a femoral internal rotation (4.5 ± 0.9 deg). During the lunge, in the flexion phase, the lateral condyle showed a larger posterior translation than the medial one (6.2 ± 0.8 mm vs 5.3 ± 0.8 mm) associated with a femoral external rotation (3.1 ± 0.9 deg). In the extension phase, there is a larger anterior translation of the lateral condyle than the medial one (5.8 ± 0.8 mm vs 4.6 ± 0.8 mm) associated with femoral internal rotation (6.2 ± 0.9 deg). Analysing individual kinematics, we also found a negative correlation between clinical scores and VV laxity during sit to stand (R= −0.61) and that the higher femoral extra-rotation, the poorer clinical scores (R= 0.65). The finding of outliers in the VV and IE rotations analysis highlights the importance of a correct soft tissue balancing in order to allow the prosthetic
Background and aim. Recent proposals have been introduced to modify stem
The successful application of smart implantable devices requires materials used to easily adapt and respond to their microenvironment via physical and chemical cues. Nanotopography, a known important factor in cellular processes (i.e. cellular adhesion, proliferation, and, differentiation), has become a central approach to imparting clinically relevant materials with bioactive and biomimetic properties. This work focuses on the use of Directed irradiation synthesis (DIS), to create nanostructures on dissimilar materials including surfaces of metals, semiconductors, and polymers. DIS is a novel method that allows for the tuning of both surface nanoscale topography and surface chemistry through the tailoring of ion beam parameters, including energy and fluence. The application of DIS to direct cellular interactions on Ti6Al4V, MgAZ31, and PEEK is presented. Topography and chemistry changes at the nanoscale were characterized by SEM, XPS, AFM, and Contact Angle. In vitro tests were performed using macrophages (JJ741A) and human aortic and bone marrow mesenchymal stem cell (MSCs). DIS promotes an advanced cell adhesion state where cells are orientated following the
Current treatments of rotational deformities of long bones in children are osteotomies and fixations. In recent years, the use of guided growth for correction of rotational deformities has been reported in several pre-clinical and clinical studies. Various techniques have been used, and different adverse effects, like growth retardation and articular deformities, have been reported. We tested a novel plate concept intended for correction of rotational deformities of long bones by guided growth, with sliding screw holes to allow for longitudinal growth, in a porcine model. Twelve, 12-week-old female porcines were included in the study. Surgery was performed on the left femur. The right femur was used as control. Plates were placed distally to induce external rotation, as longitudinal growth occurred. CT-scans of the femurs were processed to 3-D models and used for measuring rotation.Introduction
Method
Device-associated infection remains a serious clinical problem in orthopaedic and trauma surgery. The emergence of resistant organisms such as methicillin resistant Staphylococcus aureus (MRSA) has further exacerbated this problem by limiting the range of treatment options. Currently, systemic antibiotic therapy is the cornerstone of treatment, alongside surgical resection of infected tissues and implant removal. The potential for antibiotic loaded biomaterials to support the prevention and treatment of infection is significant, although the currently available options are limited in number and often re-purposed from other applications e.g. antibiotic loading of bone cement. The first part of the talk will cover the basic concepts involved in antibiotic treatment, with an emphasis on the ideal antibiotic release kinetics from biomaterials, and how bacterial biofilms and antibiotic resistance influence antimicrobial efficacy. The next generation of biomaterials for antibiotic delivery should be specifically
Summary Statement. Reverse shoulder
Introduction. Modern forearm crutches have evolved little since their invention last century. We evaluated comfort and user satisfaction of 2 spring-loaded crutches compared with existing crutch designs. Methods. 25 healthy subjects (11 male, average age 26.2 years; 14 female, average age 22.7 years) participated. Each used 5 different crutches in a randomly allocated order:. standard forearm crutch (ergonomic grip);. spring-loaded crutch (soft spring, ergonomic grip);. spring-loaded crutch (firm spring, ergonomic grip);. standard forearm crutch (normal grip);. axillary crutch. Participants completed a purpose built course at the Pedestrian Accessibility and Movement LAboratory, UCL (PAMELA). The course consisted of a mixture of slopes (transverse and longitudinal), sprint, slalom, and a slow straight. All participants completed questionnaires relating to crutch user preference and
First works focuses on the characterization (physical and biological) of this biomaterial. Current work had studied osteoinductive and osteoconductive capacity of these hydrogels. In vivoresults highlight a significant bone reconstruction two months after implantations on bone lesions in mice. Bone is a dynamic and vascularized tissue that has the ability of naturally healing upon damage. Nevertheless, in the case of critical size defects this potential is impaired. Present approaches mainly consider autografts and allografts, which presents several limitations. Bone Tissue Engineering (BTE) is based on the use of 3D matrices to guide both cellular growth, differentiation to promote bone regeneration. Hence, matrices can contain biological materials such as cells and growth factors. Our project aims to