Advertisement for orthosearch.org.uk
Results 1 - 20 of 47
Results per page:
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 33 - 33
1 Nov 2015
Meermans G Goetheer-Smits I Lim R Van Doorn J Kats J
Full Access

Introduction. A high inclination angle has been linked to an increased dislocation rate, liner fracture, and increased wear. The aim of this study was to compare the operative (OI) with the radiological inclination (RI) angle and determine the influence of patient morphology on pelvic tilt and cup inclination angle. Methods. In the first cohort of 100 patients undergoing uncemented primary total hip arthroplasty, the cup was inserted freehand. In the second cohort of 100 patients, the OI was measured with the aid of a digital inclinometer. RI and pelvic tilt in lateral decubitus were measured. Results. The mean RI in the freehand group was similar to the protractor group (38.5 SD 7.0 and 38.3 SD 4.7; p=0.83) with a significantly greater variance in the freehand group (range 22°-60° versus 27°-51°; p=0.0001) and more outliers for the inclination safe zone (24 versus 10; p=0.01). The mean difference between the RI and OI (ΔRI-OI) in the protractor group was 12.3° SD 4.2 (range 3.8°-19.8°). The mean pelvic tilt was 4.0° (SD 3.5) of adduction. Linear regression analysis demonstrated that RI was positively correlated with OI (r. 2. =0.44, p<0.0001). Hip circumference was negatively correlated with pelvic tilt (r. 2. =0.20, p=0.002) and ΔRI-OI (r. 2. =0.37, p=0.0001). There was a significant reduction in the number of inclination outliers over time in the second cohort (6 versus 2 versus 1 versus 1; p=0.04). Discussion. The mean ΔRI-OI was 12.3°. In patients with a larger hip circumference there was less pelvic tilt in the frontal plane and less ΔRI-OI. Surgeons using the posterior approach in lateral decubitus should aim for a lower OI in order to achieve an acceptable RI, especially in patients with a smaller hip circumference. Conclusion. In our hands, taking into account patient morphology and using a digital protractor intraoperatively has significantly reduced the number of inclination outliers


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 41 - 41
1 Jun 2017
Meermans G Van Doorn J Kats J
Full Access

The orientation of the acetabular component is influenced by the orientation at which the surgeon implants the component and the orientation of the pelvis at the time of implantation. When operating with the patient in the lateral decubitus position, pelvic orientation can be highly variable. The goal of this study was to examine the effect of two different pelvic supports on cup orientation. In this prospective study, 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position were included. In the control group a single support over the pubic symphysis (PS) was used. In the study group, a single support over the ipsilateral anterior superior iliac spine (ASIS) was used. In every patient, the cup was inserted and the angle of the cup introducer relative to the floor (apparent operative inclination; OIa) was measured with the aid of a digital inclinometer. The radiographic inclination (RI) was measured on anteroposterior pelvic radiographs at 6 weeks postoperatively. The target zone for cup inclination was 35–45°. In both cohorts the cups were implanted close to the target OIa with an absolute difference with the OIa of 0.86° SD 0.82 in the PS cohort and 1.03° SD 0.99 in the ASIS cohort (p=0.18). The difference between the RI and OIa was higher in the PS cohort 12.2° SD 4.1 compared with 7.5° SD 3.7 in the ASIS cohort (p<0.0001) with also a bigger variance (p=0.04) in the PS cohort. The mean RI was 38.5° SD 4.4 compared with 39.2° SD 4.1 (p=0.26) respectively. There were more cups outside the RI target zone in the PS cohort compared with the ASIS cohort (respectively 26 versus 15; p<0.05). In this study the mean difference between the RI and OIa (the angle of the cup introducer during surgery) was significantly less when using a support over the ASIS compared with a support over the pubic symphysis. Apparently using a support over the ASIS causes less pelvic motion during surgery compared with a support over the pubic symphysis. This resulted in less variance and inclination outliers when using a tight target zone of 35–45°


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 19 - 19
1 May 2018
McMahon S Magill P Bopf D Beverland D
Full Access

Introduction

Radiological inclination (RI) is determined in part by operative inclination (OI), which is defined as the angle between the cup axis or handle and the sagittal plane. In lateral decubitus the theatre floor becomes a surrogate for the pelvic sagittal plane.

Critically at the time of cup insertion if the pelvic sagittal plane is not parallel to the floor either because the upper hemi pelvis is internally rotated or adducted, RI can be much greater than expected. We have developed a simple Pelvic Orientation Device (POD) to help achieve a horizontal pelvic sagittal plane.

The POD is a 3-sided square with flat footplates that are placed against the patient's posterior superior iliac spines following initial positioning (figure 1). A digital inclinometer is then placed parallel and perpendicular to the patient to give readings of internal rotation and adduction, which can then be corrected.

Methods

A model representing the posterior aspect of the pelvis was created. This permitted known movement in two planes to simulate internal rotation and adduction of the upper hemi pelvis, with 15 known pre-set positions. 20 participants tested the POD in 5 random, blinded position combinations, providing 200 readings.

The accuracy was measured by subtracting each reading from the known value.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 862 - 866
1 Jul 2018
Darrith B Bell JA Culvern C Della Valle CJ

Aims

Accurate placement of the acetabular component is essential in total hip arthroplasty (THA). The purpose of this study was to determine if the ability to achieve inclination of the acetabular component within the ‘safe-zone’ of 30° to 50° could be improved with the use of an inclinometer.

Patients and Methods

We reviewed 167 primary THAs performed by a single surgeon over a period of 14 months. Procedures were performed at two institutions: an inpatient hospital, where an inclinometer was used (inclinometer group); and an ambulatory centre, where an inclinometer was not used as it could not be adequately sterilized (control group). We excluded 47 patients with a body mass index (BMI) of > 40 kg/m2, age of > 68 years, or a surgical indication other than osteoarthritis whose treatment could not be undertaken in the ambulatory centre. There were thus 120 patients in the study, 68 in the inclinometer group and 52 in the control group. The inclination angles of the acetabular component were measured from de-identified plain radiographs by two blinded investigators who were not involved in the surgery. The effect of the use of the inclinometer on the inclination angle was determined using multivariate regression analysis.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 597 - 603
1 May 2014
Nomura T Naito M Nakamura Y Ida T Kuroda D Kobayashi T Sakamoto T Seo H

Several radiological methods of measuring anteversion of the acetabular component after total hip replacement (THR) have been described. These studies used different definitions and reference planes to compare methods, allowing for misinterpretation of the results. We compared the reliability and accuracy of five current methods using plain radiographs (those of Lewinnek, Widmer, Liaw, Pradhan, and Woo and Morrey) with CT measurements, using the same definition and reference plane. We retrospectively studied the plain radiographs and CT scans in 84 hips of 84 patients who underwent primary THR. Intra- and inter-observer reliability were high for the measurement of inclination and anteversion with all methods on plain radiographs and CT scans. The measurements of inclination on plain radiographs were similar to the measurements using CT (p = 0.043). The mean difference between CT measurements was 0.6° (-5.9° to 6.8°).

Measurements using Widmer’s method were the most similar to those using CT (p = 0.088), with a mean difference between CT measurements of -0.9° (-10.4° to 9.1°), whereas the other four methods differed significantly from those using CT (p < 0.001).

This study has shown that Widmer’s method is the best for evaluating the anteversion of the acetabular component on plain radiographs.

Cite this article: Bone Joint J 2014; 96-B:597–603.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 20 - 20
7 Jun 2023
Navacchia A Pagkalos J Davis E
Full Access

We have previously reported on the improved all-cause revision and improved revision for instability risk in lipped liner THAs using the NJR dataset. These findings corroborate studies from the Australian (AOANJRR) and New Zealand (NZOA) joint registries. The optimal orientation of the lip in THAs utilising a lipped liner remains unclear to many surgeons. The aim of this study was to identify impingement-free optimal liner orientations whilst considering femoral stem version, cup inclination and cup version. A cementless THA kinematic model was developed using a 20 degree XLPE liner. Physiological ROM and provocative dislocation manoeuvre analyses were performed. A total of 9 cup positions were analysed (inclination 30–40–50 degrees, anteversion 5-15-25 degrees) and combined with 3 stem positions (anteversion 0-15-30 degrees) and 5 lip orientations (right hip 11 to 7 o'clock). Some lip orientation/component position combinations lead to impingement within the physiological ROM range. Using a lipped liner increases the femoral head travel distance prior to dislocation when impingement occurs in the plane of the lip. In THAs with a cup inclination of 30 and 40 degrees, inferior lip orientations (7–8 o'clock for a right hip) performed best. Superior lip orientation performed best with a cup inclination of 50 degrees. Femoral stem version has a significant effect on the range of movement prior to impingement and hence the preferred lip orientation. The optimal orientation of the lip in lipped liner THA is dependent on the position of both the acetabular and femoral components. In the common component orientation combination of stem anteversion 15, cup inclination 40 and cup anteversion 15, the optimal lip orientation was postero-inferiorly (8 o'clock for a right hip). Preventing impingement during physiological ROM is possible with appropriate lip liner orientation


Bone & Joint Open
Vol. 5, Issue 4 | Pages 260 - 268
1 Apr 2024
Broekhuis D Meurs WMH Kaptein BL Karunaratne S Carey Smith RL Sommerville S Boyle R Nelissen RGHH

Aims. Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. Methods. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed. Results. CTAC positioning was generally accurate, with minor deviations in cup inclination (mean 2.7°; SD 2.84°), anteversion (mean 3.6°; SD 5.04°), and rotation (mean 2.1°; SD 2.47°). Deviation of the hip centre of rotation (COR) showed a mean vector length of 5.9 mm (SD 7.24). Flange positions showed small deviations, with the ischial flange exhibiting the largest deviation (mean vector length of 7.0 mm; SD 8.65). Overall, 83% of the implants were accurately positioned, with 17% exceeding malpositioning thresholds. CTACs used in tumour resections exhibited higher positioning accuracy than rTHA cases, with significant differences in inclination (1.5° for tumour vs 3.4° for rTHA) and rotation (1.3° for tumour vs 2.4° for rTHA). The use of intraoperative navigation appeared to enhance positioning accuracy, but this did not reach statistical significance. Conclusion. This study demonstrates favourable CTAC positioning accuracy, with potential for improved accuracy through intraoperative navigation. Further research is needed to understand the implications of positioning accuracy on implant performance and long-term survival. Cite this article: Bone Jt Open 2024;5(4):260–268


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 200 - 205
1 Feb 2022
Orita K Goto K Kuroda Y Kawai T Okuzu Y Matsuda S

Aims. The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). Methods. We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up. Results. The mean follow-up period was 19.1 years (SD 0.6; 17.3 to 20.1). The 19-year overall survival rate with the end point of all-cause revision was 97.0% (95% confidence interval (CI) 91 to 100). The mean JOA score improved from 43.2 (SD 10.6; 30 to 76) before surgery to 90.2 (SD 6.4; 76 to 98) at the final follow-up (p < 0.001). There was no osteolysis or loosening of the acetabular or femoral components. The overall steady-state wear rate was 0.013 mm/year (SD 0.012). There was no hip with a steady-state wear rate of > 0.1 mm/year. There was no significant difference in wear rates for each period. We found no significant correlation between the wear rate and age, body weight, BMI, or cup inclination. Conclusion. First-generation annealed HXLPE shows excellent wear resistance and no acceleration of wear for approximately 20 years, with low all-cause revision rates. Cite this article: Bone Joint J 2022;104-B(2):200–205


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 65 - 65
19 Aug 2024
Walter W Lin D Weinrauch P de Smet K Beaule P Young D Xu J Manktelow A
Full Access

Hip resurfacing arthroplasty (HRA) is a bone conserving alternative to total hip arthroplasty. We present the early 2-year clinical and radiographic follow-up of a novel ceramic-on-ceramic (CoC) HRA in an international multi-centric cohort. Patients undergoing HRA between September 2018 and January 2021 were prospectively included. Patient-reported outcome measures (PROMS) in the form of the Forgotten Joint Score (FJS), HOOS Jr, WOMAC, Oxford Hip Score (OHS) and UCLA Activity Score were collected preoperatively and at 1- and 2-years post-operation. Serial radiographs were assessed for migration, component alignment, evidence of osteolysis/loosening and heterotopic ossification formation. 200 patients were identified to have reached 2-year follow-up. Of these, 185 completed PROMS follow-up at 2 years. There was significant improvement in HOOS (p< 0.001) and OHS (p< 0.001) and FJS (p< 0.001) between the pre-operative and 2-year outcomes. Patients reported improved pain (p<0.001), function (p<0.001) and reduced stiffness (p<0.001) as measured by the WOMAC score. Patients had improved activity scores on the UCLA Active Score (P<0.001) with 53% reporting return to impact activity at 2 years. There was no osteolysis and the mean acetabular cup inclination angle was 41deg and the femoral component shaft angle was 137deg. No fractures were reported over but there was one sciatic nerve palsy with partial recovery. Two patients were revised; one at 3 months for pain due to a misdiagnosed back problem and another at 33 months for loosening of the acetabular component with delamination of the titanium ingrowth surface. CoC resurfacing at 2-years post-operation demonstrate promising results with satisfactory PROMS


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 9 - 9
1 Apr 2022
Williams S Pryce G Board T Isaac G Williams S
Full Access

The 10 year survivorship of THR is generally over 95%. However, the incidence of revision is usually higher in year one. The most common reason being dislocation which at least in part is driven by inadequate range of motion (ROM) leading to impingement, subluxation and ultimately dislocation which is more frequently posterior. ROM is affected by patient activity, bone and component geometry, and component placement. To reduce the incidence of dislocation, supported by registry data, there has been an increase in the use of so-called ‘lipped’ liners. Whilst this increases joint stability, the theoretical ROM is reduced. The aim of this study was to investigate the effect of lip placement on impingement. A rigid body geometric model was incorporated into a CT scan hemi-pelvis and femur, with a clinically available THR virtually implanted. Kinematic activity data associated with dislocation was applied, comprising of five posterior and two anterior dislocation risk activities, resulting from anterior and posterior impingement respectively. Cup inclination and anteversion was varied (30°-70°, 0°-50° respectively) to simulate extremes of clinical outcomes. The apex position of a ‘lipped’ liner was rotated from the superior position, anteriorly and posteriorly in steps of 45°. Incidence and location of implant and bone impingement was recorded in 5346 cases generated. A liner with the lip placed superior increased the occurrence of implant-implant impingement compared with a neutral liner. Rotation of the lip from superior reduced this incidence. This effect was more marked with posterior rotation which after 90° reduced anterior impingement to levels similar to a neutral liner. Complete inversion of the lipped liner reduced impingement, but this and anterior rotation both negate its function – additional stability. This study comprises one bone geometry and component design and one set of activity profiles. Nevertheless, it indicates that appropriate lip placement can minimise the likelihood of impingement for a range of daily activities whilst still providing additional joint stability


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 34 - 34
1 Apr 2022
Gowda S Whitehouse S Morton R Panteli M Charity J Wilson M Timperley J Hubble M Howell J Kassam A
Full Access

The MAKO Robotic arm is a haptic robotic system that can be used to optimise performance during total hip arthroplasty (THA). We present the outcome of the first 40 robotic cases performed in an NHS foundation trust along with the technique of performing robotic THA in our unit. Forty consecutive patients undergoing robotic THA (rTHA) were compared to a case matched group of patients undergoing manual THA (m-THA). 2:1 blinded case matching was performed for age, sex, implants used (Trident uncemented socket and cemented Exeter stem, Stryker Mahwah, NJ, US) and surgeon grade. Comparisons were made for radiological positioning of implants, including leg length assessment, and patient reported functional outcome (PROMS). Pre- and post-operative radiographs were independently analysed by 2 authors. All patients underwent THA for a primary diagnosis of osteoarthritis. No significant difference between groups was identified for post-operative leg length discrepancy (LLD) although pre-operatively a significantly higher LLD was highlighted on the MAKO group, likely due to patient selection. Significantly lower post-operative socket version was identified in the MAKO cohort although no difference in post-operative cup inclination was noted. However, there was significantly larger variance in post-op LLD (p=0.024), cup version (p=0.004) and inclination (p=0.05) between groups indicating r-THA was significantly less variable (Levene's test for homogeneity of variance). There was no significant difference in the number of cases outside of Lewinnek's ‘safe’ zone for inclination (p=0.469), however, there were significantly more cases outside Lewinnek's ‘safe’ zone for version (12.5% vs 40.3%, p=0.002) in the m-THA group. We report the commencement of performance of MAKO robotic THA in an NHS institution. No problems with surgery were reported during our learning curve. Robotic THA cases had less variability in terms of implant positioning suggesting that the MAKO robot allows more accurate, less variable implant positioning with fewer outliers. Longer term follow-up of more cases is needed to identify whether this improved implant positioning has an effect on outcomes, but the initial results seem promising


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 44 - 44
1 Nov 2021
Zhou Y
Full Access

With the approval of our institute, we reviewed all the robot-assisted hip revision during October 2019 and August 2021. MAKO joint arthroplasty system was used to perform the hip revision surgery. Seventy-one robot-assisted hip revision cases were included. Cup revisions were carried out in 68 patients while stem revisions were also carried out in 68 patients. Three types of registration techniques (extra acetabular bone surface based, liner based, metal shell based or cage surface based) on the acetabular side. The extra acetabular bone surface was the commonest used for registration (48/70, 68.6%, mean accuracy 0.37mm), followed by liner surface (11/70, 15.7%, mean accuracy 0.36mm), acetabulum cup (10/70, 14.3%, mean accuracy 0.37mm), and cage surface (1/70, 1.4%, accuracy 0.40mm). We succeeded cup registration and robotic arm guided cup insertion in all the cases. The average cup inclination and anteversion after revision were 40.87°±4.39° and 13.87°±4.24°, respectively. Cups in 62 cases (62/68, 91.2%) were within the Lewinnek safe zone while in 55 cases (55/68, 80.9%) were within the Callanan safe zone. The Mako robot-assisted system could bring favorable cup reconstruction in hip revision with acceptable surgical time and blood loss. Accurate registration could be achieved by different methods


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 9 - 9
1 Nov 2021
Farey J Chai Y Xu J Sadegpour A Jones DM Baker N Vigdorchik J Walter W
Full Access

Imageless computer navigation systems in total hip arthroplasty (THA) improve acetabular cup position, thereby reducing the risk of revision surgery for all causes as well as dislocation. We aimed to evaluate the registration accuracy of 3 alternate registration planes. A prospective, observational study was conducted with 45 THA in the supine position using two imageless navigation systems and 3 registration planes. Patient position was registered sequentially using an optical system (Stryker OrthoMap) and an inertial sensor-based system (Navbit Sprint) with 3 planes of reference: (Plane 1) an anatomical plane using the anterior superior iliac spines (ASISs) and the pubic symphysis; (Plane 2) a functional plane parallel to the line between the ASISs and the table plane; and, (Plane 3) a functional plane that was perpendicular to the gravity vector and aligned with the longitudinal axis of the patient. The 3 measurements of acetabular cup inclination and anteversion were compared with the measurements from postoperative computed tomography (CT) scans. For inclination, the mean absolute error was significantly lower for Plane 3 (1.80°) than for Plane 2 (2.74°), p = .038 and was lower for both functional planes than for the anatomical plane (3.75°), p < .001. For anteversion, the mean absolute error was significantly lower for Plane 3 (2.00°) than for Plane 2 (3.69°), p = .004 and was lower for both functional planes than for the anatomical plane (8.58°), p < .001. Patient registration using functional planes more accurately measured the acetabular cup position than registration using anatomic planes


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 45 - 45
1 Jan 2018
Darrith B Bell J Culvern C Della Valle C
Full Access

Accurate placement of the acetabular component is essential in Total Hip Arthroplasty (THA). The purpose of this study is to determine if an analog spirit level can improve the surgeon's ability to achieve acetabular inclination within the “safe-zone” of 30 to 50 degrees. We reviewed 167 primary THAs performed by a single surgeon over 14 months. Procedures were performed at two facilities, an inpatient hospital where a spirit level was utilized and an ambulatory facility where it was not. We excluded 47 patients with a BMI>40, age>68 or a surgical indication other than osteoarthritis who were not candidates for the ambulatory center. Cup inclination angles were measured from de-identified plain radiographs by two blinded investigators not involved in the index procedures. The effect of level usage on inclination angle was determined using multivariate regression analysis. The mean inclination angle for the 68 hips performed with the level was 42.9 degrees (95% CI: 41.7–44.0) compared to 46.5 degrees (95% CI: 45.2–47.7) for the 52 hips without it (p<.001). Regression analysis demonstrated a 9.1% difference in cup inclination due to the level (p<.001), and THAs performed without the level were 3 times more likely to result in inclinations > 50 degrees (OR 2.8, p=.036). The two investigators' measurements demonstrated a correlation of 0.95 (95% CI: 0.93–0.97). Use of a simple spirit level resulted in a significant reduction in the number of outliers compared to the freehand technique. The spirit level may be a simple and inexpensive tool to improve acetabular component abduction angles


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 37 - 37
1 Aug 2021
Falsetto A Sanders E Weishorn J Gill H McGoldrick N Beaulé P Innmann M Merle C Grammatopoulos G
Full Access

This matched cohort study aims to (a) assess differences in spinopelvic characteristics of patients having sustained a dislocation following THA and a control THA group without dislocation; (b) identify spinopelvic characteristics associated with risk of dislocation and; (c) propose an algorithm to define the optimum cup orientation for minimizing dislocation risk. Fifty patients with a history of THA dislocation (29 posterior-, 21 anterior dislocations) were matched for age, gender, body mass index, index diagnosis, and femoral head size with 100 controls. All patients were reviewed and underwent detailed quasi-static radiographic evaluations of the coronal- (offset; center-of-rotation; cup inclination/anteversion) and sagittal- reconstructions (pelvic tilt, pelvic incidence, lumbar lordosis, pelvic-femoral-angle, cup ante-inclination). The spinopelvic balance (PI-LL), combined sagittal index (CSI= Pelvic-femoral-angle + Cup Anteinclination) and Hip-User-Index were determined. sagittal index (CSI= Pelvic-femoral-angle + Cup Anteinclination) and Hip-User-Index were determined. Parameters were compared between the two groups (2-group analysis) and between controls and per direction of dislocation (3-group analysis). There were marginal coronal differences between the groups. Sagittal parameters (lumbar-lordosis, pelvic-tilt, CSI, PI-LL and Hip-User-Index) differed significantly. PI-LL (>10°) and standing pelvic tilt (>18°) were the strongest predictors of dislocation risk (sensistivity:70%/specificity:70%). All hips with a standing CSI<195° dislocated posteriorly and all with CSI>260° dislocated anteriorly. A CSI between 200–245° was associated with significantly reduced risk of dislocation (OR:6; 95%CI:2.5–15.0; p<0.001). In patients with unbalanced and/or rigid lumbar spine, standing CSI of 215–245° was associated with significantly reduced dislocation risk (OR:10; 95%CI:3.2–29.8; p<0.001). PI-LL and standing pelvic-tilt determined from pre-operative, standing, lateral spinopelvic radiograph can be useful screening tools, alerting surgeons of patients at increased dislocation risk. Measurement of the pelvic-femoral angle pre-operatively provides valuable information to determine the optimum, cup orientation associated with reduced dislocation risk by aiming for a standing CSI of 200–245°


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 40 - 40
1 Oct 2018
Faizan A Scholl L Zhang J Ries MD
Full Access

Introduction. Iliopsoas tendonitis after total hip arthroplasty (THA) can be a considerable cause of pain and patient dissatisfaction. The optimal cup position to avoid iliopsoas tendonitis has not been clearly established. Implant designs have also been developed with an anterior recess to avoid iliopsoas impingement. The purpose of this cadaveric study was to determine the effect of cup position and implant design on iliopsoas impingement. Materials. Bilateral THA was performed on three fresh frozen cadavers using oversized (jumbo) offset head center revision acetabular cups with an anterior recess (60, 62 and 66 mm diameter) and tapered wedge primary stems through a posterior approach. The relatively large shell sizes were chosen to simulate THA revision cases. At least one fixation screw was used with each shell. A 2mm diameter flexible stainless steel cable was inserted into the psoas tendon sheath between the muscle and the surrounding membrane to identify the location of the psoas muscle radiographically. Following the procedure, CT scans were performed on each cadaver. The CT images were imported in an imaging software for further analysis. The acetabular shells, cables as well as pelvis were segmented to create separate solid models of each. To compare the offset head center shell to a conventional hemispherical shell in the same orientation, the offset head center shell was virtually replaced with an equivalent diameter hemispherical shell by overlaying the outer shell surfaces of both designs and keeping the faces of shells parallel. enabled us to assess the relationship between the conventional shells and the cable. The shortest distance between each shell and cable was measured. To determine the influence of cup inclination and anteversion on psoas impingement, we virtually varied the inclination (30°/40°/50°) and anteversion (10°/20°/30°) angles for both shell designs. Results. The CT analysis revealed that the original orientation (inclination/anteversion) of the shells implanted in 3 cadavers were as follows: Left1: 44.7°/23.3°; Right1: 41.7°/33.8°; Left2: 40.0/17; Right2: 31.7/23.5; Left3: 33.0/2908; Right3: 46.7/6.3. For the offset center shells, the shell to cable distance in all the above cases were positive indicating that there was clearance between the shells and psoas. For the hemispherical shells, in 3 out of 6 cases, the distance was negative indicating impingement of psoas. With the virtual implantation of both shell designs at orientations 40°/10°, 40°/20°, 40°/30° we found that greater anteversion helped decrease psoas impingement in both shell designs. When we analyzed the influence of inclination angle on psoas impingement by comparing wire distances for three orientations (30°/20°, 40°/20°, 50°/20°), we found that the effect was less pronounced. Further analysis comparing the offset head center shell to the conventional hemispherical shell revealed that the offset design was favored (greater clearance between the shell and the wire) in 17 out of 18 cases when the effect of anteversion was considered and in 15 out of 18 cases when the effect of inclinations was considered. Discussion. Our results indicate that psoas impingement is related to both cup position and implant geometry. For an oversized jumbo cup, psoas impingement is reduced by greater anteversion while cup inclination has little effect. An offset head center cup with an anterior recess was effective in reducing psoas impingement in comparison to a conventional hemispherical geometry. In conclusion, adequate anteversion is important to avoid psoas impingement with jumbo acetabular shells and an implant with an anterior recess may further mitigate the risk of psoas impingement


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 57 - 57
1 Jan 2018
Sugano N Hamada H Takao M Sakai T Nakamura N
Full Access

The purposes of this study were to review retrospectively the 10-year outcome of cementless total hip arthroplasty (THA) using an active robot system in the femoral canal preparation for an anatomic short stem and navigation in the cup placement through a mini incision posterior approach. We reviewed all patients who underwent THA with this procedure in 53 hips between 2004 and 2007. There were no intraoperative fracture nor navigation- or robotic-related complications. All implant sizes were same as planned ones. All cases were followed up at least two years and all implants showed bone ingrowth stable according to the Engh's criteria. After then, six patients died of unrelated causes. Two patients (three hips) could not come to the 10-year follow-up examination. The remaining 44 hips were followed for 10 to 12 years (11 years on average). There is no dislocation. The average JOA hip score improved from 48 preoperatively to 96 at the final examination. On the postoperative x-ray measurements, the average cup radiographic inclination was 39° and the radiographic anteversion was 14°. There was no stem which showed more than 2° of varus or valgus alignment. There was no case who showed more than 5mm of limb length discrepancy. Postoperative CT images of 38 hips were obtained at 2 weeks. After matching the coordinates of the pelvis and femur with the preoperative planning, we got very small differences in alignment parameters between the measured values and the planed ones. The difference differences between the plan and measured values were −0.1° in cup inclination, −1.4° in cup anteversion, stem 0.5° in coronal alignment, 0.6° in stem sagittal alignment, and −1.6° in stem anteversion, respectively. We conclude that our robotic femoral preparation for a short anatomical stem and navigated cup placement thru a mini-posterior approach was safe and feasible without affecting the accuracy of the procedure. There were no long term adverse effect of the procedure


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 18 - 18
1 May 2019
Logishetty K Rudran B Gofton W Beaule P Field R Cobb J
Full Access

Background. For total hip arthroplasty (THA), cognitive training prior to performing real surgery may be an effective adjunct alongside simulation to shorten the learning curve. This study sought to create a cognitive training tool to perform direct anterior approach THA, validated by expert surgeons; and test its use as a training tool compared to conventional material. Methods. We employed a modified Delphi method with four expert surgeons from three international centres of excellence. Surgeons were independently observed performing THA before undergoing semi-structured cognitive task analysis (CTA) before completing successive rounds of electronic surveys until consensus. The agreed CTA was incorporated into a mobile and web-based platform. Forty surgical trainees (CT1-ST4) were randomised to CTA-training or a digital op-tech with surgical videos, before performing a simulated DAA THA in a validated fully-immersive virtual reality simulator. Results. Experts reached 100% consensus after five rounds. They defined THA in 46 steps and 52 decision points in 8 distinct procedural phases. Each phase comprised of a set of actions, cognitive demands, and critical errors and strategies. This CTA was mapped onto an open-access web-based learning tool [1]. Surgeons who prepared with CTA performed a simulated THA more efficiently (Time: 26 vs. 36 minutes and Procedural steps: 64 vs. 78), with fewer errors in instrument selection (22 vs 34 instances) and help required (6 vs. 19 instances), and with more accuracy (acetabular cup inclination error: 7° vs. 12°, anteversion error: 11° vs 19°) than those who prepared with conventional material. Discussion. This is the first validated CTA tool for arthroplasty. It provides structure for competency-based learning of this complex procedure. It is more effective at preparing orthopaedic trainees for a new procedure than conventional materials, for learning sequence, instrumentation and motor skills. Implications. Cognitive training combines education on decision making, knowledge and technical skill. It is a validated educational tool to upskill surgeons to perform hip arthroplasty and could replace current training and preparation methods for junior surgeons


Bone & Joint Open
Vol. 5, Issue 6 | Pages 514 - 523
24 Jun 2024
Fishley W Nandra R Carluke I Partington PF Reed MR Kramer DJ Wilson MJ Hubble MJW Howell JR Whitehouse SL Petheram TG Kassam AM

Aims

In metal-on-metal (MoM) hip arthroplasties and resurfacings, mechanically induced corrosion can lead to elevated serum metal ions, a local inflammatory response, and formation of pseudotumours, ultimately requiring revision. The size and diametral clearance of anatomical (ADM) and modular (MDM) dual-mobility polyethylene bearings match those of Birmingham hip MoM components. If the acetabular component is satisfactorily positioned, well integrated into the bone, and has no surface damage, this presents the opportunity for revision with exchange of the metal head for ADM/MDM polyethylene bearings without removal of the acetabular component.

Methods

Between 2012 and 2020, across two centres, 94 patients underwent revision of Birmingham MoM hip arthroplasties or resurfacings. Mean age was 65.5 years (33 to 87). In 53 patients (56.4%), the acetabular component was retained and dual-mobility bearings were used (DM); in 41 (43.6%) the acetabulum was revised (AR). Patients underwent follow-up of minimum two-years (mean 4.6 (2.1 to 8.5) years).