Osteoarthritis (OA) leads to articular cartilage degradation, following complex dysregulation of chondrocyte's metabolism towards a catabolic state. Mechanical and biochemical signals are involved and need to be considered to understand the condition. Regulatory network-based models (RNM) successfully simulated the biological activity of the chondrocyte and the transduction of mechanical signals at the molecular and cell levels. However, the knowledge gap between single-cell regulation and intercellular
The purpose of the this survey study was twofold: 1) to examine different aspects of satisfaction with post-operative care in injured workers who have undergone rotator cuff surgery and 2) to examine the relationship between receiving a newly implemented summary report and the overall satisfaction with surgery and recovery. The clinical
Few doctors answer their bleep by stating who they are. Answering the phone in a formal manner is of utmost importance in the hospital setting especially by on-call teams who are normally referred patients by other specialties, general practitioners and in some cases by other hospitals. An audit to evaluate the internal hospital
Multiple myeloma (MM) is an incurable hematological tumor stemming from malignant plasma cells. MM cells accumulate in the bone marrow (BM) and shape the BM niche by establishing complex interactions with normal BM cells, boosting osteoclasts (OCLs) differentiation and causing bone disease. This unbalance in bone resorption promotes tumor survival and the development of drug resistance. The
Abstract. INTRODUCTION. Knee tactile afferents act as synovial joint limit detectors, eliciting signalling upon excessive fibrous tissue strain but play little role in joint function as disruption of their activity does not induce impairments in movement or sensation. In contrast, knee nociceptive afferents gain activity upon inflammation producing painful sensation in pathology such as osteoarthritis. We hypothesize that similar in origin, fast-conducting tactile afferents become sensitized by inflammatory mediators and gain activity causing proprioceptive sensation impairment in patients with knee pathology, driving gait abnormalities and osteoarthritis progression. To investigate the activity of these neurons, we will produce a co-culture model using our existing 3D bone mimetic and iPSC derived tactile sensory neurons by utilizing the NGN2-BRN3A plasmid produced by Nickolls et al producing a model of these tactile neurons at their position within the joint at the fibrous/bony interface. METHODS. Human Y201 MSC cells embedded in type I collagen gels (0.05 × 106 cell/gel) were differentiated to osteocytes andmechanically loaded in silicone plates (5000 µstrain, 10Hz, 3000 cycles) (n=5). RNA quantified by RNAseq analysis (NovaSeq S1) and neuronal
Abstract. Objectives. In the human knee, the cells of the articular cartilage (AC) and subchondral bone (SB) communicate via the secretion of biochemical factors. Chondrocyte-based AC repair strategies, such as articular chondrocyte implantation, are widely used but there has been little investigation into the
Regenerative medicine (RM) promises to restore both the mechanical functionality and the biological composition of tissues after damage. Three-dimensional scaffolds are used in RM to host cells and let them produce proteins that are the building blocks of the native tissues. While regenerating tissues evolve over time through dynamic biomechanical and biochemical changes, current scaffolds’ generation are passive causing mechanical mismatch, suboptimal growth, and pain. Furthermore, current scaffolds ignore the complexity of the reciprocal bio-mechanics regulation, hindering the design of the next-gen scaffolds. To regenerate tissues and organs, biofabrication strategies that impart spatiotemporal control over cell-cell and cell-extracellular matrix
Variations in pelvic anatomy are a major risk factor for misplaced percutaneous sacroiliac screws used to treat unstable posterior pelvic ring injuries. A better understanding of pelvic morphology improves preoperative planning and therefore minimises the risk of malpositioned screws, neurological or vascular injuries, failed fixation or malreduction. Hence a classification system which identifies the clinically important anatomical variations of the sacrum would improve
Worldwide, tendon disorders are one of the main causes of disability that decrease the quality of life of individuals and represent a substantial economic burden on society. Currently, the main therapies used for tendon injuries are not able to restore tendon functionality, and due to tendons' hypovascular and hypocellular nature, they present a reduced healing capacity, which also limits the success of the available therapies. In order to discover new therapies, extracellular vesicles (EVs), key players in cell-cell
Distal radius fractures are common, particularly in post-menopausal women. Several factors have been identified such as osteopenia and an increased risk of falling. We hypothesised that increased soft tissue padding from muscle and fat in the volar hand may confer an element of protection against fractures more in men than women and more in younger than older patients. The aim of the study was to assess for thenar and hypothenar thickness and assess whether it varies between sexes and changes with age. We retrospectively evaluated hand MRI scans performed for non-acute conditions in adults without previous injury or surgery. Using the Patient Archiving and
Pericytes are contractile, motile cells that surround the capillary. Recent studies have shown that pericytes promoted joint fibrosis and induced subchondral bone angiogenesis, indicating the role of pericytes in osteoarthritis (OA). However, whether pericytes are involved in regulating inflammatory and catabolic response, as well as fibrotic repair of cartilage is still unclear. Here we used 2D and 3D models to investigate the
Calcium is an important element for a wide range of physiological functions including muscle contraction, neuronal activity, exocytosis, blood coagulation and cell
Remodeling of the cancellous bone is more active than that of the cortical bone. It is known that the remodeling is governed by the intracancellous fluid pressure. Particularly, the lacunocanalicular pore (PLC) fluid pressure (FP) is essential for survival of the osteocyte and
Intervertebral disc degeneration (IDD) affects more than 80% of the population all over the world. Current strategies for the treatment of IDD are based on conservative or surgical procedures with the aim of relieving pain. Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy in recent decades, but studies showed that the particularly hostile microenvironment in the intervertebral disc (IVD) can compromise cells survival rate. The use of exosomes, extracellular vesicles released by various cell types, possess considerable economic advantages including low immunogenicity and toxicity. Exosomes allow intercellular
Among the advanced technology developed and tested for orthopaedic surgery, the Rizzoli (IOR) has a long experience on custom-made design and implant of devices for joint and bone replacements. This follows the recent advancements in additive manufacturing, which now allows to obtain products also in metal alloy by deposition of material layer-by-layer according to a digital model. The process starts from medical image, goes through anatomical modelling, prosthesis design, prototyping, and final production in 3D printers and in case post-production. These devices have demonstrated already to be accurate enough to address properly the specific needs and conditions of the patient and of his/her physician. These guarantee also minimum removal of the tissues, partial replacements, no size related issues, minimal invasiveness, limited instrumentation. The thorough preparation of the treatment results also in a considerable shortening of the surgical and of recovery time. The necessary additional efforts and costs of custom-made implants seem to be well balanced by these advantages and savings, which shall include the lower failures and revision surgery rates. This also allows thoughtful optimization of the component-to-bone interfaces, by advanced lattice structures, with topologies mimicking the trabecular bone, possibly to promote osteointegration and to prevent infection. IOR's experience comprises all sub-disciplines and anatomical areas, here mentioned in historical order. Originally, several systems of Patient-Specific instrumentation have been exploited in total knee and total ankle replacements. A few massive osteoarticular reconstructions in the shank and foot for severe bone fractures were performed, starting from mirroring the contralateral area. Something very similar was performed also for pelvic surgery in the Oncology department, where massive skeletal reconstructions for bone tumours are necessary. To this aim, in addition to the standard anatomical modelling, prosthesis design, technical/technological refinements, and manufacturing, surgical guides for the correct execution of the osteotomies are also designed and 3D printed. Another original experience is about en-block replacement of vertebral bodies for severe bone loss, in particular for tumours. In this project, technological and biological aspects have also been addressed, to enhance osteointegration and to diminish the risk of infection. In our series there is also a case of successful custom reconstruction of the anterior chest wall. Initial experiences are in progress also for shoulder and elbow surgery, in particular for pre-op planning and surgical guide design in complex re-alignment osteotomies for severe bone deformities. Also in complex flat-foot deformities, in preparation of surgical corrections, 3D digital reconstruction and 3D printing in cheap ABS filaments have been valuable, for indication, planning of surgery and patient
Introduction and Objective. Low back pain (LBP) is a disorder strongly associated with intervertebral disc degeneration (IDD) with an important impact on the quality of life of affected people. To date, LBP treatment is based on conservative methods with the aim to reduce back pain without restoring the degenerative environment of the disc. The main cause of IDD is the drastic reduction of the proteoglycan content within the nucleus pulposus (NP), eventually leading to the loss of disc water content, micro-architecture, biochemical and mechanical properties. A promising approach for disc regeneration is represented by the transplantation of mesenchymal stromal cells (MSCs). The exact mechanism remains unknown. Growing evidence suggests that MSCs can influence cells and modulate cells’ behaviour by secreting a set of bioactive factors. MSCs secretome is composed of several molecules such as soluble protein, lipids, nucleic acids and extracellular vesicles (EVs) involved in inflammation, immunomodulation, cell survival and intercellular
Increasing incidence of osteoporosis, obesity and an aging population have led to an increase in low energy hip fractures in the elderly. Perceived lower blood loss and lower surgical time, media coverage of minimal invasive surgery and patient expectations unsurprisingly have led to a trend towards intramedullary devices for fixation of extracapsular hip fractures. This is contrary to the Cochrane review of random controlled trials of intramedullary vs extramedullary implants which continues recommends the use of a sliding hip screw (SHS) over other devices. Furthermore, despite published literature of minimally invasive surgery (MIS) of SHS citing benefits such as reduced soft tissue trauma, smaller scar, faster recovery, reduced blood loss, reduced analgesia needs; the uptake of these approaches has been poor. We describe a novel technique one which remains minimally invasive, that not only has a simple learning curve but easily reproducible results. All patients who underwent MIS SHS fixation of extracapsular fractures were included in this study. Technique is shown in Figure 1. We collated data on all intertrochanteric hip fractures that were treated by a single surgeon series during period Jan 2014 to July 2015. Data was collected from electronic patient records and radiographs from Picture Archiving and
Telemedicine is the delivery of healthcare from a remote location using integrated computer/
Distal radius fractures (DRF) are very common injuries. National recommendations (British Orthopaedic Association, National Institute for Health and Care Excellence (NICE)) exist in the UK to guide the management of these injuries. These guidelines provide recommendations about several aspects of care including which type of injuries to treat non-operatively and surgically, timing of surgery and routine follow-up. In particular, current recommendations include considering immobilizing patients for 4 weeks in plaster for those managed conservatively, and operating on fractures within 72 hours for intra-articular injuries and 7 days for extra-articular fractures. With increased demands for services and an ageing population, prompt surgery for those presenting with distal radius fractures is not always possible. A key factor is the need for prompt surgery for hip fracture patients. This study is an audit of the current standard of care at a busy level 2 trauma unit against national guidelines for the management of DRFs. This retrospective audit includes all patients presenting to our emergency department from June to September 2018. Patients over 18 years of age with a diagnosis of a closed distal radius fracture and follow-up in our department were included in the study. Those with open fractures were excluded. Data was retrieved from clinical coding, electronic patient records, and IMPAX Client (Picture archiving and
Summary Statement. The purpose is to evaluate the effects of internet usage on new patient referral patterns to identify optimal patient recruitment and