Advertisement for orthosearch.org.uk
Results 1 - 20 of 397
Results per page:
Bone & Joint Research
Vol. 6, Issue 5 | Pages 345 - 350
1 May 2017
Di Laura A Hothi H Henckel J Swiatkowska I Liow MHL Kwon Y Skinner JA Hart AJ

Objectives. The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. Methods. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables. Results. We measured median taper material loss rates of 0.210 mm. 3. /year (0.030 to 0.448) for the metal head group and 0.084 mm. 3. /year (0.059 to 0.108) for the ceramic group. The difference was not significant (p = 0.58). Moreover, no significant correlation between material loss and implant or patient factors (p > 0.05) was found. Conclusions. Metal heads did not increase taper damage on CoCr trunnions compared with ceramic heads from the same hip design. The amount of material released at the taper junctions was very low when compared with available data regarding CoCr/Ti coupling in metal-on-metal bearings. Cite this article: A. Di Laura, H. Hothi, J. Henckel, I. Swiatkowska, M. H. L. Liow, Y-M. Kwon, J. A. Skinner, A. J. Hart. Retrieval analysis of metal and ceramic femoral heads on a single CoCr stem design. Bone Joint Res 2017;6:–350. DOI: 10.1302/2046-3758.65.BJR-2016-0325.R1


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 133 - 133
1 Mar 2009
Ogunwale B Brewer J Meek R
Full Access

Background: Increased use of metal on metal (MOM) hip replacements has stimulated interest in immunological effects of chronic CoCr elevation. Unlike metal-on-polyethelylene, MOM implants are associated with a perivascular infiltrate of lymphocytes & plasma cells. This may be the mode of failure of MOM implants. A reduction in CD8+ T lymphocyte counts associated with MOM implants has previously been described. CoCr therefore seems to affect the adaptive immune response even though it is not a proteinous antigen. We therefore analyzed the effects of CoCr particles on T cells & B cells. We also analyzed it effects on dendritic cells, which are the key antigen presenting cells to T helper cells. Methods: CoCr nano particles were produced by repetitive short spark discharges between electrodes of prosthetic CoCr alloy. Electron micrography & BET both confirmed nanoparticle size. Dendritic cells (DCs) were harvested from mouse bone marrow & cultured in medium supplemented with GM-CSF for 6 days, generating DCs typically 80–90% CD11c+. These were incubated with CoCr in concentrations of 25, 10 & 2.5 μg/ml, for 24 hours, or lipopolysaccharide 1 μg/ml as a positive control. Following incubation, activation status of CD11c+ DCs was characterized by MHC Class II, CD40, CD80 & CD86 expression by FACS analysis. T-Lymphocytes were harvested from mouse lymph nodes & cultured in medium without phenol red. These were incubated at 5 ×105 cells/well with either CoCr, conA (positive control) or CoCr + conA & repeated using 2.5 ×105 cells/well. Other positive controls (CD3 & CD 28) were studied in repeating the experiment. At 48 hours Almar Blue was added & further incubation for 24 hrs. Light absorbance at 570nm & 600nm was then used to determine T cell proliferation. B-Lymphocytes were harvested from the lymph nodes of mice which were only able to mount a B-cell reaction to Hen egg Lysozyme (HEL). These were incubated with medium with CoCr, HEL (positive control) or CoCr+ HEL. The concentration of the CoCr was varied between 25, 10 & 2.5 μg/ml. FACS analysis for markers of B cell regulation was performed after 48 hours incubation. Results: CoCr did not significantly increase CD 40 expression on DCs, although such expression was increased significantly by lipopolysaccaride CoCr did not significantly up or down regulate B cells as compared to the effects of HEL. CoCr did inhibit proliferation of T-cells & this was more pronounced where the ratio of CoCr/cell density was higher. Conclusion: Both dendritic & B cells are unaffected by CoCr in vitro. However, CoCr inhibited T cell proliferation. This demonstrates the observed reduction in CD + T cells are probably due to a direct effect of CoCr, & not mediated through another cell type. The perivascular response to MOM implants on the other hand probably requires cell interaction in an in vivo environment


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 852 - 858
1 Jul 2022
Grothe T Günther K Hartmann A Blum S Haselhoff R Goronzy J

Aims. Head-taper corrosion is a cause of failure in total hip arthroplasty (THA). Recent reports have described an increasing number of V40 taper failures with adverse local tissue reaction (ALTR). However, the real incidence of V40 taper damage and its cause remain unknown. The aim of this study was to evaluate the long-term incidence of ALTR in a consecutive series of THAs using a V40 taper and identify potentially related factors. Methods. Between January 2006 and June 2007, a total of 121 patients underwent THA using either an uncemented (Accolade I, made of Ti. 12. Mo. 6. Zr. 2. Fe; Stryker, USA) or a cemented (ABG II, made of cobalt-chrome-molybdenum (CoCrMo); Stryker) femoral component, both with a V40 taper (Stryker). Uncemented acetabular components (Trident; Stryker) with crosslinked polyethylene liners and CoCr femoral heads of 36 mm diameter were used in all patients. At a mean folllow-up of 10.8 years (SD 1.1), 94 patients (79%) were eligible for follow-up (six patients had already undergone a revision, 15 had died, and six were lost to follow-up). A total of 85 THAs in 80 patients (mean age 61 years (24 to 75); 47 (56%) were female) underwent clinical and radiological evaluation, including the measurement of whole blood levels of cobalt and chrome. Metal artifact reduction sequence MRI scans of the hip were performed in 71 patients. Results. A total of 20 ALTRs were identified on MRI, with an incidence of 26%. Patients with ALTR had significantly higher median Co levels compared with those without ALTR (2.96 μg/l (interquartile range (IQR) 1.35 to 4.98) vs 1.44 μg/l (IQR 0.79 to 2.5); p = 0.019). Radiological evidence of osteolysis was also significantly associated with ALTR (p = 0.014). Median Cr levels were not significantly higher in those with ALTR compared with those without one (0.97 μg/l (IQR 0.72 to 1.9) v 0.67 μg/l (IQR 0.5 to 1.19; p = 0.080). BMI, sex, age, type of femoral component, head length, the inclination of the acetabular component, and heterotopic ossification formation showed no significant relationship with ALTR. Conclusion. Due to the high incidence of local ALTR in our cohort after more than ten years postoperatively, we recommend regular follow-up investigation even in asymptomatic patients with V40 taper and metal heads. As cobalt levels correlate with ALTR occurrence, routine metal ion screening and consecutive MRI investigation upon elevation could be discussed. Cite this article: Bone Joint J 2022;104-B(7):852–858


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 450 - 450
1 Dec 2013
Zeng H Karwowski J Lawrynowicz D Nevelos J
Full Access

Introduction:. The purpose of this study was to evaluate the basic corrosion properties of conventional CoCr (ASTM F 1537, UNS R31537), Gas Atomized Dispersion Strengthened (GADS) CoCr (ASTM 1537, UNS R31539), Ti6Al4V ELI (ASTM F 136, UNS R56401) and Ti-12Mo-6Zr-2Fe (TMZF) (ASTM F 1813) alloys that are used in joint replacement applications. Methods:. Test coupon samples made from alloys' wrought bar stocks were polished then tested. Each material had 4 groups (n. 3. 3) that were tested in 4 aqueous solutions: 1) pH 7.4, 2) pH 5, 3) pH 2, and 4) pH 2 with 1 M of H. 2. O. 2. Potential dynamic polarization was conducted using a Princeton Applied Research VMC Potentiostat, with an Ag/AgCl electrode as the reference electrode, and it resembled method in ASTM F 2129-08. The samples were evaluated with Scanning Electron Microscope (SEM). Results:. 1) Both pH and solution chemistry changes affected the corrosion behaviors and caused the polarization curves to shift; Figure 1 & 2 show the polarization curves of CoCr and Ti alloys. 2) The polarization curves for conventional CoCr and GADS alloys were identical with minor differences; Figure 1 shows the polarization curves for CoCr and GADS alloys at pH 7.4 and pH 2 conditions. 3) The polarization curves for Ti6Al4V ELI and TMZF alloys were also similar at most conditions with some minor differences; Figure 2 shows the polarization curves of Ti6Al4V ELI and TMZF alloys at pH 2. It should also be noted that at pH 2 plus H. 2. O. 2. condition, Ti6Al4V ELI showed increased current at voltages near 1V as shown in Figure 2. This might suggest an onset of accelerated corrosion or breakdown that is not normally observed with Ti alloys. TMZF showed constant current in the same region, suggesting no breakdown or accelerated corrosion at this condition. SEM revealed corrosion of TI6Al4V ELI alloy similar to etching as shown in Figure 2. Discussion:. The fact that GADS and conventional CoCr alloys behaved identically suggests similar corrosion properties and resistance in normal conditions; the same applies to TI6Al4V ELI and TMZF alloys. It was unexpected to see the seemingly “breakdown” or accelerated corrosion for Ti6Al4V ELI in pH 2 solution with added H. 2. O. 2. at voltages near 1 V. Note that the test condition was very aggressive and the proper amount or concentration of H. 2. O. 2. in a test solution has not been well documented in the literature. However, it should be kept in mind that alloys' corrosion properties under extreme test conditions should not be overlooked as similar conditions could happen clinically in crevice environments for example. Regardless, it is interesting to observe the difference between Ti6Al4V ELI and TMZF at this particular condition, and it warrants further investigation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 420 - 420
1 Dec 2013
McPherson E Burgett M Halim T Donaldson T Clarke I
Full Access

Controversy has existed for decades over the role of fretting-corrosion in modular CoCr heads used with stems of CoCr vs Ti6Al4V. Since retrieval data on taper performance remains scant, we report here an18-year survivorship of a Ti6Al4V: CoCr combination (APR design; Intermedics Inc). Unique to this study were the threaded profiles present on both stem and head tapers (Fig. 1). This female patient was revised for pain, osteolysis and recurrent hip dislocation at 17 years, 10 months. A prior MPE hip replacement performed for her severely dysplastic right hip had lasted 11 years. At this 2nd revision, the 28 mm CoCr head was found dislocated posteriorly and superiorly. Metallosis was evident in the tissues. The polyethylene liner showed extensive rim damage on both anterior and posterior aspects. The neck of her APR Revision stem (Intermedics Inc) had worn through the polyethylene rim and impinged on the metal cage. The cage was found loose, the liner had disassociated, and the peri-trochanteric areas were compromised by massive osteolysis. The femoral stem and head were removed together without disassembly. The femoral stem and acetabular construct were replaced by an ARCOS revision system using 36 mm head with a Freedom cup (cemented to Max-Ti cage; Biomet Inc.). The complete femoral neck and head were bi-valved assembled in horizontal plane for direct imaging by interferometry and SEM (Fig. 1a). After sectioning the head separated from the stem. Quantitative imaging used 1 to 5 regions with 6-replicate measurements per region and differentiation into contact and non-contact zones (Fig. 1b). Visual corrosion mapping (3) was recorded digitally in 4 anatomical views (Figs 1b–f). The thread profile on contact zone inside the head (Fig. 2a) had a pitch of approximately 40 μm and a peak-to-valley depth of 4 μm overall (Fig. 2b profile section of thread: PV = 2 μm). The thread profile on stem trunnion (Fig. 3a) had a pitch of approximately 125 μm and a peak-to-valley depth of 3.5 μm overall (Fig. 2b profile section of thread: PV = 1 μm). Thus the stem trunnion thread was much coarser than the head. Overall corrosion grading was judged very mild. Overall we were satisfied that this Ti6Al4V: CoCr combination taper junction with threaded interfaces had performed very well for 18 years. Nevertheless, our visual grading was subject to opinion and thus unrewarding. The continuing project will quantify the contacting and non-contacting regions of head and stem (Fig. 1b)


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 111 - 111
1 Jan 2016
Walsh W Bertollo N Hamze A Christou C Gao B Angibaud L
Full Access

Introduction. Biological fixation through bone ingrowth and ongrowth to implants can be achieved with a variety of surface treatments and technologies. This study evaluated the effect of two different three dimensional surface coatings for CoCr where porosity was controlled through the use of different geometry of CoCr beads in the sintering process. Methods. Test specimens in Group A were coated with conventional spherical porous-bead technology. The porous coating technology used on Group B was a variation of the conventional porous-bead technology. Instead of spherical beads, cobalt-chromium particles in irregular shapes were sieved for a particular size range, and were sintered onto the specimen substrate using similar process as Group A. The geometry and the size variation of the particles resulted in a unique 3D porous structure with widely interconnected pores. Three implants were placed bicortically in the tibia. Two implants were placed in the cancellous bone of the medial distal femur and proximal tibia bilaterally with 4 implantation conditions (2 mm gap, 1 mm gap line-to-line, and press fit). Animals were euthanized at 4 or 12 weeks for standard mechanical, histological and histomorphometric endpoints. Results. Shear strength increased with time for both groups (P<0.001). While no difference was detected between groups at the 4 week time point, the difference was statistically significant at 12 weeks with the irregular shaped beads using in the coating in group B providing a shear strength that outperformed the standard spherical beads. Histomorphometry revealed new bone ingrowth into the porous domains of both implant groups improved with time (P<0.001). Significantly greater (P<0.05) new bone integration was observed with the irregular shaped beads in the cortical as well as cancellous sites at 4 and 12 weeks (Figure 1). Discussion. Significant improvements can be made in the fixation strength of three dimensional CoCr coatings. This holds true in cortical implantation as well as different cancellous implantation scenarios. Material chemical composition of both coating and substrate conforms to ASTM F75 standard. The conventional sintered porous-bead technology in Group A provided a multi-layer porous structure at the bone implant interface has been well-established for the clinical use on TKA implants for over 15 years. This type of coating usually produces an average porosity of 30% to 40%, and an average pore size of 150 µm to 250 µm. The porous coating technology used on Group B was a variation of the conventional porous-bead technology. Instead of spherical beads, cobalt-chromium particles in irregular shapes were sieved for a particular size range, and were sintered onto the specimen substrate using similar process as Group A. Due to the geometry and the size variation of the particles, a true 3D porous structure with widely interconnected pores can be formed. Microstructure analysis on femoral implants showed that this coating technology is able to provide an average porosity of 50% to 70%, and an average pore size of 200 µm to 450 µm. This technology also produces a rougher coating surface appearance which could also play a potential role in the overall performance


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 23 - 23
1 May 2016
Arnholt C MacDonald D Kocagoz S Chen A Cates H Klein G Rimnac C Kurtz S
Full Access

Introduction. Previous studies of long-term CoCr alloy femoral components for TKA have identified 3rd body abrasive wear and inflammatory cell induced corrosion (ICIC). The extent of femoral condyle surface damage in contemporary CoCr femoral components is currently unclear. The purpose of this study was to investigate the prevalence and morphology of damage (3rd body scratches and ICIC) at the bearing surface in retrieved TKA femoral components from contemporary designs. Methods. 308 CoCr femoral TKA components were collected as part of an ongoing, multi-institutional orthopedic implant retrieval program. The collection included contemporary designs from Stryker (Triathlon n=48, NRG n=10, Scorpio n=31), Depuy Synthes (PFC n=27) and Zimmer (NexGen n=140, Persona n=1) and Biomet (Vanguard n=51). Hinged knee designs and unicondylar knee designs were excluded. Components were split into groups based on implantation time: short-term (1–3y, n=134), intermediate-term (3–5y, n=73) and long-term (6–15y, n=101). Each grouping was mainly revised for instability, infection and loosening. Third-body abrasive wear of CoCr was evaluated using a semi-quantitative scoring method similar to the Hood method (Figure 1). A score of 1 had minimal damage and a score of 4 corresponded to damage covering more than 50% of the evaluated area. ICIC damage was reported as location of affected area. A white light interferometer (Zygo New View 5000) was also used to analyze the topography of severe damage of the bearing surface. For this analysis, three representative components from each cohort were selected and analyzed in three locations on the apex of the bearing surface. We analyzed the following roughness parameters: Ra, Rsk, and Rku. Results. On the CoCr bearing surface, the primary damage mechanisms were large scratches, small random scratches, and ICIC damage (Figure 2). Mild to severe damage (Damage Score ≥ 2) was observed in 96% of the short-term, 98% intermediate-term and 94% of long-term components. Severe damage (Damage Score = 4) was observed in 43% of the short-term, 50% intermediate-term and 56% of long-term components. ICIC damage observed on a portion of the bearing surface was detected in 43% of the short-term components, 30% of the intermediate-term components and 26% of the long term components. Apparent ICIC damage on the bearing and/or a non-bearing region of the component was observed in 85% of the short-term components, 75% of the intermediate-term components and 80of long-term TKA components. The Ra, Rsk, and Rku were similar between cohorts (Table 1). Discussion. Abrasive wear of the femoral components was frequently observed in retrieved contemporary femoral components for TKA, regardless of their implantation time, and can most likely be attributed to third body damage caused by bone or bone cement debris. The prevalence of severe CoCr damage scores was highest in the long-term cohort, while the appearance of ICIC damage was lowest in the long-term cohort. Surface roughness parameters were similar in all three cohorts suggesting that the mechanism for this damage is comparable throughout the first 15 years of service. Future work is necessary to quantify the in vivo release of CoCr from abrasive wear and corrosion mechanisms, and the effects of increased surface roughness on wear of the polyethylene counter face


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 393 - 393
1 Dec 2013
Murphy S Le D
Full Access

Introduction. Adverse Local Tissue Reactions (ALTR) have been reported in association with both wear and corrosion. Tissue reactions have been reported in association with corrosion at CoCr head-CoCr neck, CoCr head-TiAl6V4 neck, and CoCr modular neck on beta-titanium (TMZF) stem junctions. The current abstract reports on 3 cases of ALTR in association with CoCr modular necks on convention titanium (TiAl6V4) stem junctions. Case 1. A 67 year old male (87 kg, 1.73 m, BMI 29.1) presented with new onset hip irritation 11 months after surgery. Radiographs show no abnormalities. Further investigation revealed the following: ESR = 95, CRP = 5, Cr level = 1.0, Co level = 4.1, leukocyte transformation testing = highly reactive to nickel. Hip aspiration was culture negative with 11,250 wbc. Metal artifact reduction MR showed cystic local reaction in the region of the greater trochanter. Case 2. A 52 year old male (89 kg, 1.83 m, BMI 26.5) presented with new onset hip irritation 30 months after surgery. Radiographs show no abnormalities. Further investigation revealed the following: ESR = 7, CRP = 5.4, Cr level = 2.1, Co level = 4.8, leukocyte transformation testing = reactive to nickel. Hip aspiration was culture negative with 3995 wbc. Metal artifact reduction MR showed cystic local reaction in the region of the iliopsoas. Case 3. A 52 year old male (104 kg, 1.85 m, BMI 30.1) presented with new onset hip irritation 26 months after surgery. Radiographs show no abnormalities. Further investigation revealed the following: ESR = 33, CRP = 34.9, Cr level = 1.0, Co level = 3.7, leukocyte transformation testing = no reactivity to any of the biomaterials. Hip aspiration was culture negative with 3,780 wbc. Metal artifact reduction MR showed cystic local reaction in the region of the iliopsoas. Discussion. All three of these patients are scheduled for revision surgery. All three had ceramic-ceramic bearings. We have experience with 1029 ceramic-ceramic THA with fixed neck conventional titanium and modular titanium neck implants with minimum 2 yr f/u and have never diagnosed an adverse reaction in any of these patients. It is possible that corrosion at the CoCr neck on TiAl6V4 stem junction is the root cause of these reactions. Although the incidence of diagnosed reactions is roughly 1%, it appears that the use of CoCr at any junction under significant mechanical stress can result in adverse local tissue reaction and therefore should either be avoided or used with great caution and compelling indications


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 293 - 293
1 May 2009
Ogunwale B Brewer J Schmidt-Ott A Tabrizi N Meek R
Full Access

Unlike metal-on-Polyethylene, metal-on-metal (MoM) implants seem to affect the adaptive immune response as evident from the associated perivascular infiltrate containing lymphocytes and plasma cells. This is more pronounced in implant failure secondary to aseptic loosening, and may represent the failure mode. A reduction in CD8+ T lymphocyte counts has also been described with Hip Resurfacing. MoM articulations produce a much smaller order of size of wear particles (nanoparticles) than metal-on- Polyethylene, which may be responsible for the observed adaptive immune system effects. We therefore analyzed the effects of CoCr nanoparticles (CoCrNP) on Dendritic Cells, T cells & B cells. We produced CoCrNP using repetitive short spark discharges between electrodes of prosthetic CoCr alloy. Electron micrography and Brunauer-Emmet-Teller method both confirmed nanoparticle size. The following experiments were then undertaken. Dendritic Cells were cultured from mouse bone marrow and incubated with CoCrNP of varying concentrations for 24hrs, or lipopolysaccharide as a positive control. Activation status was then characterized by CD40 expression on fluorescence activated cell sorting (FACS) analysis. T Cell Viability; Cells from mouse lymph nodes were incubated with CoCrNP in varying concentrations. At 48hrs, Propidium Iodide (PI) was added and proportion of CD4+ lymphocytes that were PI+ve determined by FACS analysis. T Cell proliferation; Cells from mouse lymph nodes were cultured in medium without phenol red and incubated with μCD3 (anti CD3), μCD3 + CoCrNP, μCD3 + μCD28 or μCD3 + μCD28 + CoCrNP. At 48hrs, Almar Blue was added & difference in light absorbance at 570nm & 600nm was then used to determine T cell proliferation at 72hrs. Cells from lymph nodes of an MD4 (Hen Egg Lysozyme (HEL) specific B cell receptor transgenic) mouse were incubated with CoCrNP, HEL (positive control) or CoCrNP + HEL. B cell activation at 48hrs was characterised by CD40 and CD86 expression on FACS analysis. We found CoCrNP did not significantly increase CD40 expression on DCs, neither did it alter CD40 or CD86 expression on B cells. Using a sublethal concentration of CoCrNP as determined from the viability tests, CoCrNP inhibited CD3 & CD3/CD28 dependent T-cell proliferation. This would indicate CoCrNP reduces T cell proliferation and/or survival, which may explain the observed reduction in CD8+ count with hip resurfacing. Understanding the development of the Peri-vascular infiltrate associated with MoM implants will however, probably require more complex (most likely in vivo) models


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 451 - 451
1 Dec 2013
Nguyen D Burgett M Clarke I Halim T Donaldson T
Full Access

Damage to metal-on-metal bearings (MOM) has been varyingly described as “edge wear,” third-body abrasive wear and “rim-damage” (1–4). However, no distinction has been made between any of these proposed wear mechanisms. The goal of this study was to discover what features might differentiate between surface damage created by either 2-body or 3-body wear mechanisms in MOM bearings. The hypotheses were that surface damage created by impingement of the cup rim (2-body wear) would be i) linear on the micro-scale, ii) reveal transverse striations (in direction of the sliding rim), iii) have either no raised lip or have a single lip along one side of the track, and iv) have an asymmetrical surface profile across the track width. Five cases with 28 mm MOM, five of 34–38 mm MOM, and five of 50–56 mm diameter were studied (N = 15). The main wear zone (MWZ) was measured in each MOM head and the number of 2-body wear tracks recorded in the non-wear (NWZ) and main wear zone (MWZ). Bearing damage was examined using a white-light interferometer (Zygo Newview 600; 5x lens) and a scanning electron microscope (Zeiss MA15). The depths and slopes were assessed across the width of the damage tracks. Thirteen of the 15 MOM bearings showed wear tracks that exhibited all four of the hypothesized 2-body wear characteristics. These wear tracks will be referred to as “micro-segments”. While micro-segments visually appeared linear, microscopically they revealed a semi-lunar edge coupled with transverse striations leading to a linear edge. This indicated that during impingement episodes, the cup rim ploughed material from the CoCr surface at the semi-lunar edge (Fig. 1), thereby creating the abruptly raised lip on the linear edge of the track. This “snow plough effect” and its distinct edge effect can account for the asymmetrical surface profile. A different type of 2-body wear was identified and referred to as “furrows”. Furrows also visually appeared linear visually, but microscopically revealed longitudinal striations and a symmetrical surface profile (Fig. 2). Furrows had lips raised on both sides of the track, but not circumscribing the terminal ends of the track. Instead, the ends of the furrows are tapered smooth transitions to the articular surface. Thus, 2-body tracks were found to be distinguishable from 3-body tracks (micro-grooves) and were classified as either micro-segments or furrows. Micro-segements supported hypotheses 1–3 and provided a clearer definition for hypothesis-4, while furrows only supported hypothesis 1. The divergence in features between micro-segments and furrows allude to different interactions between the bearing and cup rim that led to each type of track. While these data represent a small set of cases (n = 15) this evidence shows for the first time what was previously only suspected (2), that the CoCr rim can routinely create 2-body wear damage mechanisms in MOM femoral heads


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 153 - 153
1 Jun 2012
Parikh A Hill P Pawar V Morrison M
Full Access

Introduction. Large diameter femoral heads offer increased range of motion and reduced risk of dislocation. However, their use in total hip arthroplasty has historically been limited by their correlation with increased polyethylene wear. The improved wear resistance of highly crosslinked UHWMPE has led a number of clinicians to transition from implanting traditionally popular sizes (28mm and 32 mm) to implanting 36 mm heads. Desire to further increase stability and range of motion has spurred interest in even larger sizes (> 36 mm). While the long-term clinical ramifications are unknown, in-vivo measurements of highly crosslinked UHMWPE liners indicate increases in head diameter are associated with increased volumetric wear [1]. The goal of this study was to determine if this increase in wear could be negated by using femoral heads with a ceramic surface, such as oxidized Zr-2.5Nb (OxZr), rather than CoCrMo (CoCr). Specifically, wear of 10 Mrad crosslinked UHMWPE (XLPE) against 36 mm CoCr and 44 mm OxZr heads was compared. Materials and Methods. Ram-extruded GUR 1050 UHMWPE was crosslinked by gamma irradiation to 10 Mrad, remelted, and machined into acetabular liners. Liners were sterilized using vaporized hydrogen peroxide and tested against either 36 mm CoCr or 44 mm OxZr (OXINIUM(tm)) heads (n=3). All implants were manufactured by Smith & Nephew (Memphis, TN). Testing was conducted on a hip simulator (AMTI, Watertown, MA) as previously described [2]. The 4000N peak load (4 time body weight for a 102 kg/225 lb patient) and 1.15 Hz frequency used are based upon data obtained from an instrumented implant during fast walking/jogging and have previously been shown to generate measurable XLPE wear [2,3]. Lubricant was a serum (Alpha Calf Fraction, HyClone Laboratories, Logan, UT) solution that was replaced once per week [2]. Liners were weighed at least once every million cycles (Mcycle) over the duration of testing (∼ 5 Mcycle). Loaded soak controls were used to correct for fluid absorption. Single factor ANOVA was used to compare groups (a = 0.05). Results. The predominant wear feature displayed on the articular surface of liners was burnishing. There were no signs of fatigue wear or of delamination. Mean wear rates (± std dev) of liners articulated against 36mm CoCr and 44 mm OxZr heads were 3.7 ± 0.4 mm. 3. /Mcycle and 2.7 ± 0.4 mm. 3. /Mcycle, respectively (Figure 1). This difference was statistically significant (p = 0.04). Discussion. Although large diameter heads offer biomechanical advantages, their use in total hip arthroplasty has historically been limited due to correlation with increased polyethylene wear. While highly crosslinked liners exhibit significantly improved wear resistance over conventional UHWMPE, their wear has also been shown to increase with head size [1]. Results presented here indicate that this increase in wear can be negated by using OxZr, rather than CoCr. Specifically, wear of XLPE liners was lower against 44 mm OxZr heads than against 36 mm CoCr heads


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 510 - 510
1 Oct 2010
Bhabra G Cartwright L Case P Evans H Fisher B Saunders M Sood A Thawley S
Full Access

Increasing numbers of young people receive metal on metal (CoCr on CoCr) total hip replacements. These implants generate nano-particles and ions of Co and Cr. Previous studies have shown that micro-particles, nano-particles and ions of CoCr cause DNA damage and chromosomal abberrations in human fibroblasts in tissue culture, and in lymphocytes and bone marrow cells in patients with implants. Several surgeons have used these implants in women of child-bearing age who have subsequently had children. Significantly elevated levels of cobalt and cromium ions have been measured in cord blood of pregnant women with CoCr hip implants. The MHRA (Medicines and Healthcare products Regulatory Agency) subsequently stated that there is a need to determine whether exposure to cobalt and chromium represents a health risk during pregnancy. In an attempt to investigate this risk, we used a well established in vitro model of the placental barrier comprised of BeWo cells (3 cells in thickness) derived from the chorion and exposed this barrier to nanometer (29nm) and micron (3.4μm) sized CoCr particles, as well as ions of Co2+ and Cr6+ individually or in combination. We monitored DNA damage in BJ fibroblasts beneath the barrier with the alkaline gel electrophoresis comet assay and with γH2AX staining. The results showed evidence of DNA damage after all types of exposure. The indirect damage (through the barrier) was equal to the direct damage at the concentrations tested. The integrity of the barriers was checked with measurements of electrical resistance (TEER values) and permeability to sodium fluorescein (376Da) and found to be intact. In light of these results and with the knowledge that BeWo cells express the transmembrane protein Connexin 43, we tested the theory that a damaging signal was being relayed via gap junctions or hemi channels in the BeWo cells to the underlying fibroblasts. We used the connexin mimetic peptides Gap19 and Gap26 (known to selectively block hemichannels and gap junctions respectively) and 18α-glycyrrhetinic acid (non-selective gap junction blocker). All of these compounds completely obliterated the indirect damaging effect seen in our previous experiments. We conclude that CoCr particles can cause DNA damage through a seemingly intact barrier, and that this damage occurs via a bystander mechanism. It would be of interest to test whether this is simply a tissue culture effect or could be seen in vivo


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 145 - 145
1 Jul 2014
Kurtz S MacDonald D Higgs G Gilbert J Klein G Mont M Parvizi J Kraay M Rimnac C
Full Access

Summary Statement. Fretting and corrosion has been identified as a clinical problem in modular metal-on-metal THA, but remains poorly understood in modern THA devices with polyethylene bearings. This study investigates taper damage and if this damage is associated with polyethylene wear. Introduction. Degradation of modular head-neck tapers was raised as a concern in the 1990s (Gilbert 1993). The incidence of fretting and corrosion among modern, metal-on-polyethylene and ceramic-on-polyethylene THA systems with 36+ mm femoral heads remains poorly understood. Additionally, it is unknown whether metal debris from modular tapers could increase wear rates of highly crosslinked PE (HXLPE) liners. The purpose of this study was to characterise the severity of fretting and corrosion at head-neck modular interfaces in retrieved conventional and HXLPE THA systems and its effect on penetration rates. Patients & Methods. 386 CoCr alloy heads from 5 manufacturers were analyzed along with 166 stems (38 with ceramic femoral heads). Metal and ceramic components were cleaned and examined at the head taper and stem taper by two investigators. Scores ranging from 1 (mild) to 4 (severe) were assigned in accordance with the semi-quantitative method adapted from a previously published technique. Linear penetration of liners was measured using a calibrated digital micrometer (accuracy: 0.001 mm). Devices implanted less than 1 year were excluded from this analysis because in the short-term, creep dominates penetration of the head into the liner. Results. The majority of the components were revised for instability, infection, and loosening. Mild to severe taper damage (score ≥2) was found in 77% of head tapers and 52% of stem tapers. The extent of damage was correlated to implantation time at the head taper (p=0.0004) and at the stem taper (p=0.0004). Damage scores were statistically elevated on CoCr heads than the matched stems (mean score difference=0.5; p<0.0001) and the two metrics were positively correlated with each other (ρ=0.41). No difference was observed between stem taper damage and head material (CoCr, ceramic) (p=0.56), nor was a correlation found between taper damage and head size (p=0.85). The penetration rate across different formulations of HXLPE was not found to be significantly different (p=0.07), and therefore grouped together for further analysis. Within this cohort, penetration rate was not found to be associated with head size (p=0.08) though a negative correlation with implantation time was noted (ρ=−0.35). When analyzed along with taper damage scores, a correlation was not observed between head taper damage scores and HXLPE penetration rates (p=0.51). Discussion. The results of this study do not support the hypothesis that 36+ mm ceramic or CoCr femoral heads articulating on HXLPE liners are associated with increased risk of corrosion among HXLPE liners when compared with smaller diameter heads. A limitation of this study is the semi-quantitative scoring technique, heterogeneity of the retrieval collection and short implantation time of the larger diameter heads. Because corrosion may increase over time in vivo, longer-term follow-up, coupled with quantitative taper wear measurement, will better assess the natural progression of taper degradation in modern THA bearings


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 387 - 387
1 Dec 2013
Kurtz S MacDonald D Higgs G Gilbert J Klein GR Mont M Parvizi J Kraay M Rimnac C
Full Access

Introduction:. Degradation of modular head-neck tapers was raised as a concern in the 1990s (Gilbert 1993). The incidence of fretting and corrosion among modern, metal-on-polyethylene and ceramic-on-polyethylene THA systems with 36+ mm femoral heads remains poorly understood. Additionally, it is unknown whether metal debris from modular tapers could increase wear rates of highly crosslinked PE (HXLPE) liners. The purpose of this study was to characterize the severity of fretting and corrosion at head-neck modular interfaces in retrieved conventional and HXLPE THA systems and its effect on penetration rates. Patients & Methods:. 386 CoCr alloy heads from 5 manufacturers were analyzed along with 166 stems (38 with ceramic femoral heads). Metal and ceramic components were cleaned and examined at the head taper and stem taper by two investigators. Scores ranging from 1 (mild) to 4 (severe) were assigned in accordance with the semi-quantitative method adapted from a previously published technique. Linear penetration of liners was measured using a calibrated digital micrometer (accuracy: 0.001 mm). Devices implanted less than 1 year were excluded from this analysis because in the short-term, creep dominates penetration of the head into the liner. Results:. The majority of the components were revised for instability, infection, and loosening. Mild to severe taper damage (score ≥2) was found in 77% of head tapers and 52% of stem tapers. The extent of damage was correlated to implantation time at the head taper (p = 0.0004) and at the stem taper (p = 0.0004). Damage scores were statistically elevated on CoCr heads than the matched stems (mean score difference = 0.5; p < 0.0001; Figure 2) and the two metrics were positively correlated with each other (ρ = 0.41). No difference was observed between stem taper damage and head material (CoCr, ceramic) (p = 0.56), nor was a correlation found between taper damage and head size (p = 0.85; Figure 3). The penetration rate across different formulations of HXLPE was not found to be significantly different (p = 0.07), and therefore grouped together for further analysis. Within this cohort, penetration rate was not found to be associated with head size (p = 0.08) though a negative correlation with implantation time was noted (ρ = −0.35). When analyzed with taper damage scores, a correlation was not observed between head damage scores and HXLPE penetration rates (p = 0.51). Discussion:. The results of this study do not support the hypothesis that 36+ mm ceramic or CoCr femoral heads articulating on HXLPE liners are associated with increased risk of corrosion among HXLPE liners when compared with smaller diameter heads. A limitation of this study is the semi-quantitative scoring technique, heterogeneity of the retrieval collection and short implantation time of the larger diameter heads. Because corrosion may increase over time in vivo, longer-term follow-up, coupled with quantitative taper wear measurement, will better assess the natural progression of taper degradation in modern THA bearings


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 567 - 568
1 Nov 2011
McCalden RW Naudie DD Bourne RB MacDonald SJ Holdsworth DW Yuan X Charron KD
Full Access

Purpose: Efforts to decrease polyethylene wear have lead to advances in polyethylene and counter-face technology for total hip replacement. In particular, the use of highly cross-linked polyethylene (XLPE) and more recently, oxidized zirconium (Oxinium) heads, have demonstrated significant in-vitro improvements in THR wear. This study reports on the early clinical performance and wear (measured with RSA) of an randomized controlled trial (RCT) comparing Oxinium and CoCr heads on XLPE and conventional polyethylene (CPE). Method: Forty patients were enrolled in a RCT and stratified to receive either an Oxinium (Ox) or CoCr head against either XLPE or CPE (ie 10 patients in each group). All patients had otherwise identical THRs and had tantalum beads inserted in the pelvis and polyethylene for wear analysis. There were no significant differences between groups with respect to patient demographics and the average age was 68 years (range 57–76) at index procedure. RSA wear analysis was performed immediately post-op, at six weeks, three and six months and then at one and two years. All patients are a minimum of four years post-op (average 4.6, range 4 – 5.8). Patients were followed prospectively using validated clinical outcome scores (WOMAC, SF-12, Harris Hip scores) and radiographs. Results: All health-related outcomes were significantly improved from pre-operative with a mean Harris Hip score and WOMAC at last follow-up of 90.9 and 80.2, respectively. Total 3D femoral head penetration at two years for each group were the following: CoCrXLPE (0.068±0.029mm); OxXLPE (0.115±0.038mm); CoCrCPE (0.187±0.079mm); and OxCPE (0.242±0.088mm). Thus, OxCPE was significantly higher than OxXLPE and CoCrXLPE but not CoCrCPE (p=0.001, p> 0.0001 and p=0.094, respectively). In other words, head penetration was higher with CPE compared to XLPE but there was no significant difference between Ox and CoCr heads. Similarily, regardless of head type (ie combining similar poly types), there was a significant difference in 3D head penetration at two years between CPE and XLPE ( CPE 0.213±0.086; XLPE 0.093±0.041, p> 0.0001). Conclusion: The early results of this RCT, using RSA as the wear analysis tool, indicate a significant improvement in wear with XLPE compared to CPE. However, it failed to show a clear advantage to the use of Oxinium over CoCr against either polyethylene. Longer follow-up is required to determine steady-state wear rates (after bedding-in) and allow comparison between bearing groups


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 65 - 65
1 May 2016
Campbell P Kung M Ebramzadeh E Van Der Straeten C DeSmet K
Full Access

Bone ingrowth fixation of large diameter, beaded cobalt chromium cups is generally considered to be reliable but this is typically judged radiographically. To date, implant retrieval data of attached bone has been limited. This study evaluated correlations between the pre-revision radiographic appearance and the measured amount of bone attachment on one design of porous coated cup. Methods. Twenty-six monoblock, CoCr Birmingham Hip Resurfacing (BHR, Smith and Nephew, TN, USA) cups with macroscopic beads and hydroxyapatite coating were studied. Seventeen were revised for acetabular malposition with the remainder revised for femoral loosening (4), pain (1), infection (1), dislocation (1) or lysis (2). Median time to revision was 35 months (10 – 70 months). Ten patients were female; the median age of all patients was 54 years. The pre-revision radiographs were visually ranked for cup-bone integration as follows: 0 = none, 1 = < 50%, 2 = 50 – 75%, 3 = 76 – 95%, 4 = > 96% integration. Rankings were made for the superior and inferior aspects, without knowledge of the appearance of bone on the retrievals. The revised cups were photographed at an angle so the dome and the cup periphery were visualized. The area of bone in four equal segments in each of the superior and inferior aspects was measured with image analysis software. A probe was used to differentiate bone from soft tissue. Only bone that covered the beads was counted. Correlation coefficients were calculated for the radiographic and image analysis data. Results. Radiographically, most cups were assessed as having more than 50% of bone attachment and 7 cups were ranked as having almost total integration with bone. Only 2 cups were assessed radiographically as fully loose. Measured total bone attachment ranged from none to 55%. Superior and inferior percent ingrowth were highly correlated (corr=0.68, p<0.001) but there was no correlation between percent bone and x-ray rank (inferior corr=0.01, p=0.96; superior corr=0.23, p=0.26). There was no correlation between cup malpositioning as a reason for revision and x-ray integration ranking (superior p=0.34; inferior p=0.80). Discussion. Despite the radiographic appearance of good fixation, there was little or no correlation between percent area of actual bone attachment and x-ray appearance. One study limitation is the assumption that attached bone was indeed integrated with the beads as destructive sectioning was not done to verify this. Published autopsy retrieval studies have shown that even a small amount of actual ingrowth can provide clinically successful fixation. Another possible limitation was the variable quality of the radiographs. Never-the-less these results raise questions about the accuracy of radiographic analysis of bone fixation. The possibility that inadequate fixation is a cause for pain leading to revision should be considered even when the radiographic appearance indicates otherwise


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 116 - 121
1 Jul 2020
Heise G Black CM Smith R Morrow BR Mihalko WM

Aims

This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys.

Methods

Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 717 - 725
1 May 2010
Kamali A Hussain A Li C Pamu J Daniel J Ziaee H Daniel J McMinn DJW

Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles.

There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants.

Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 126 - 126
1 May 2011
Kadar T Hallan G Aamodt A Indrekvam K Badawy M Skredderstuen A Havelin LI Stokke T Haugan K Furnes O
Full Access

Introduction: Highly cross-linked polyethylene acetabular cups and Oxinium femoral heads were developed to reduce wear debris induced osteolysis. Laboratory tests have shown less wear with these new materials. This RSA-study was performed to compare these new materials in vivo with conventional bearing materials used in total hip arthroplasty. Methods:150 patients were randomized to 5 groups. The patients received either a cemented Charnley mono-block stainless steel femoral stem with a 22.2 mm head or a cemented Spectron EF femoral stem with a 28 mm head. The Charnley stem articulated with a cemented Charnley Ogee acetabular cup. The Spectron EF stem was used with either cemented Reflection All-Poly EtO-sterilized ultra-high molecular weight polyethylene (UHMWPE) acetabular cups or cemented Reflection highly cross-linked polyethylene (XLPE) acetabular cups, combined with either Cobalt Chrome or Oxinium 28 mm femoral heads. Patients were followed up with repeated radiostereometric analysis (RSA) for two years to assess the rate of penetration of the femoral head into the cup (MTPM). Results: At 2 years follow-up the mean MTPM (95 % CI) for Charnley Ogee (n=25) was 0.20 mm (0.11–0.29). For the Spectron EF femoral stem used with Reflection All-Poly UHMWPE acetabular cups the mean MTPM (CI) at 2 years was 0.40 mm (0.23–0.57) when combined with Cobalt Chrome femoral head (n=23) and 0.50 mm (0.29–0.71) when combined with Oxinium femoral head (n=16). When using the Spectron EF femoral stem with Reflection XLPE combined with Cobalt Chrome (n=27) or Oxinium (n=24) femoral head the mean MTPM (CI) at 2 years was 0.19 mm (0.10–0.28) and 0.18 mm (0.07–0.29), respectively. There were no differences in penetration between the Charnley/Ogee, XLPE/CoCr and XLPE/Oxinium groups (student t-test, p=0.5–0.8). There was no statistically significant difference between the two Reflection All-Poly UHMWPE groups (p=0.09). The groups with Reflection All-Poly cups had a statistically significant higher penetration than the three groups mentioned above (p< 0.001). Discussion: The use of Reflection XLPE cups instead of Reflection All-Poly cups reduced femoral head penetration at 2 years. We used the Charnley Ogee cup as a reference due to a long clinical record. This cup was superior to Reflection All-Poly, but not Reflection XLPE, regarding femoral head penetration. Because the femoral head of Charnley Ogee is smaller than the Oxinium/Cobalt Chrome head it might be more clinical relevant to measure volumetric wear. The groups with Oxinium heads did not have less wear than the groups with Cobalt Chrome heads after 2 years follow-up. Further follow-up is needed to evaluate the benefits, if any, of Oxinium femoral heads in the clinical setting


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 3 - 6
1 Nov 2013
Wassef AJ Schmalzried TP

A modular femoral head–neck junction has practical advantages in total hip replacement. Taper fretting and corrosion have so far been an infrequent cause of revision. The role of design and manufacturing variables continues to be debated. Over the past decade several changes in technology and clinical practice might result in an increase in clinically significant taper fretting and corrosion. Those factors include an increased usage of large diameter (36 mm) heads, reduced femoral neck and taper dimensions, greater variability in taper assembly with smaller incision surgery, and higher taper stresses due to increased patient weight and/or physical activity. Additional studies are needed to determine the role of taper assembly compared with design, manufacturing and other implant variables.

Cite this article: Bone Joint J 2013;95-B, Supple A:3–6.