Advertisement for orthosearch.org.uk
Results 1 - 20 of 29
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 238 - 238
1 Jun 2012
Tamaki T
Full Access

Background. We have often experienced a change of the tone of the hammering sound during the press-fit implantation of cementless acetabular components in total hip arthroplasty (THA). The tone of the impact sound before the press-fit of acetabular components seems to differ from the tone after the press-fit. This change of tone may depend on the accuracy of the fit of the acetabular component, or it may simply be a subjective perception. The aim of this study is to evaluate the impact sounds in the press-fit implantation of cementless acetabular components. Methods. The hammering sounds in press-fit implantation of acetabular components were studied intraoperatively in 22 patients (28 hips) who underwent primary THA for treatment of advanced osteoarthritis. All operations were performed via the direct anterior approach in a supine position. The hemispherical titanium-alloy acetabular component (TriAD; stryker) was implanted in all patients. A sound level meter (NA-28; RION) was used to record and analyze the sounds. The hammering sounds of the first three hits and last three hits were recorded as the “before press-fit” and “after press-fit” sound samples, respectively. A frequency analysis was then performed at the point of peak sound pressure in each sample. Results. The dominant frequency of the impact sounds was equal to or lower than 1 kHz in 20% of the before press-fit samples and 76% of the after press-fit samples, and equal to or higher than 4 kHz in 69% of the before press-fit samples and 21% of the after press-fit samples. The frequency of the impact sounds changed significantly (p<0.01) during the press-fit implantation. Conclusion. The frequency of the impact sound changed significantly during the press-fit implantation of cementless acetabular components. We conclude that an intraoperative evaluation of the impact sound might help to improve accuracy when implanting the acetabular component


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 14 - 14
1 May 2013
Kraay M
Full Access

The cemented acetabular component has been essentially abandoned, due to the reliable and durable fixation provided by bone ingrowth into cementless acetabular components of many different designs. A variety of porous surfaces including sintered beads, titanium fibermetal, plasma sprayed titanium, and ultraporous tantalum have been shown to result in significant osteointegration, and provide long term fixation of cementless acetabular components. New ultraporous metals will also likely prove to perform similarly, however, their advantages in the primary THA are unclear. Most currently available cementless acetabular components rely on obtaining initial “interference” or “frictional” fit provided by relative underreaming. Many designs incorporate additional features such as screws, pegs, and fins to limit implant micromotion and augment initial fixation until early tissue ingrowth occurs. “Underreaming” by more than 1 mm has been associated with incomplete component seating and increased incidence of acetabular fracture. Knowledge of the geometry of the component by the surgeon is recommended, since some designs are elliptical and have a built-in degree of interference fit. Screws used to augment acetabular fixation in the primary THA can typically be restricted to the area of the acetabular dome (cluster configuration) and cups with multiple holes are usually unnecessary and may be undesirable as they allow access of wear debris to the acetabular implant-bone interface. In order to minimize backside wear and dissociation of the acetabular liner, modular components need to have a well-designed locking mechanism. Retrieval studies have shown that the peripheral rim of the acetabular liner is most susceptible to oxidative degradation and the integrity of the locking mechanism in this area can be compromised with time. Non-modular, “one piece” components eliminate these concerns, but most of these designs rely on initial frictional fit alone for stability. In the event that the position of a nonmodular component needs to be changed intra-operatively, the quality of frictional fit after repositioning can be diminished and may not be sufficient for implant stability. Modular components that incorporate screws, allow for acetabular component repositioning and adjunctive fixation with screws. Many newer acetabular component designs can accommodate a modular liner for either a metal on polyethylene, ceramic on ceramic or metal on metal bearing


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 13 - 13
1 Dec 2016
Mont M
Full Access

Recent advancements in biomaterial technology have created novel options for acetabular fixation in primary total hip arthroplasty (THA). For example, cementless acetabular fixation has become the preferred option, however, there is continued debate concerning whether long-term survivorship is comparable to that of cemented component fixation. Many doubts previously associated with early cementless designs have been addressed with newer features such as improved locking mechanisms, enhanced congruity between the acetabular liner and the shell, and the inclusion of highly cross-linked ultra-high molecular weight polyethylene (UHMWPE). Additionally, there has been increased utilization of new porous metals, titanium mesh, and hydroxyapatite (HA) coated implants. However, several retrieval studies have indicated that porous-coated cementless acetabular components can exhibit poor bony ingrowth. Many surgeons in Europe favor cemented fixation, where registry data is favorable for this interface. A surgeon's decision to use a cemented or cementless acetabular component is typically dependent on factors such as patient bone stock, surgical training, and experience. With the frequency of THAs expected to increase, it is particularly important for orthopaedic surgeons to be familiar with appropriate preoperative planning and component selection in an effort to achieve optimal outcomes. Therefore, this talk will outline and describe the options currently available for cementless and cemented acetabular fixation in primary total hip arthroplasty


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 343 - 343
1 Mar 2013
Sugano N Takao M Sakai T Nishii T Nakahara I Miki H
Full Access

Although there are several reports of excellent long-term survival after cemented total hip arthroplasty (THA), cemented acetabular components are prone to become loose when compared with femoral components. On the other hand, the survival of cementless acetabular components has been reported to be equal or better than cemented ones and the use of cementless acetabular components is increasing. However, most of the reports on survival after THA are for patients with primary hip osteoarthritis (OA) and there is no report of 20-year survival of cementless THA for patients with hip dysplasia. It is supposed to be more difficult to fix cementless acetabular components for OA secondary to hip dysplasia than primary OA. The purposes of this study were to review retrospectively the 20-year survival of cemented and cementless THA for hip dysplasia and to compare the effect of fixation methods on the long-term survival for patients with hip dysplasia. We retrospectively reviewed all patients with OA secondary to hip dysplasia treated with a cemented Bioceram hip system between 1981 and 1987, and a cementless cancellous metal Lübeck hip system between 1987 and 1991. We excluded patients aged more than 60 years, males, and Crowe 4 hips. The studied subjects were 70 hips of cemented THA (Group-C) and 57 hips of cementless THA (Group-UC). Both hip implants had a 28-mm alumina head on polyethylene articulation. The mean age at operation was 50.5 years (range, 36–60 years) in Group-C and 50.0 years (range, 29–60 years) in Group-UC. The mean BMI was 23.2 kg/m. 2. in Group-C (range, 17.3–29.3 kg/m. 2. ) and 22.9 kg/m. 2. in Group-UC (range, 18.8–28.0 kg/m. 2. ). There were no significant differences in age and BMI between the two groups. The average follow-up period was 18.0 years in Group-C and 18.4 years in Group-UC. In Group-C, revision was performed in 33 hips due to aseptic cup loosening (30 hips), stem loosening (one hip), and loosening of both components (two hips). In Group-UC, revision was performed in 10 hips due to stem fracture secondary to distal fixation (4 hips), cup loosening (three hips), polyethylene breakage (two hips), and extensive osteolysis around the stem (one hip). The survival at 20 years regarding any revision as the endpoint was 51% in Group-C and 84% in Group-UC. This difference was significant using Log-rank test (P=0.006). The cup survival at 20 years was 54% in Group-C and 92% in Group-UC. This difference was also significant (P = 0.0003). The stem survival at 20 years was 95% in Group-C and 92% in Group-UC. This difference was not significant (P = 0.4826). Cementless THA showed a higher survival rate at 20 years for hip dysplasia than cemented THA because of the excellent survival of the acetabular component without cement. We conclude that cementless THA with the cancellous metal Lübeck hip system led to better longevity at 20 years than cemented THA with the Bioceram for patients with OA secondary to hip dysplasia


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 24 - 24
1 Aug 2020
Salimian A Slullitel P Grammatopoulos G Kreviazuk C Beaulé P Wilkinson JM
Full Access

The use of cementless acetabular components is currently the gold standard for treatment in total hip arthroplasty (THA). Porous coated cups have a low modulus of elasticity that enhances press-fit and a surface that promotes osseointegration. Monoblock acetabular cups represent a subtype of uncemented cup with the liner moulded into the metal shell, minimizing potential backside wear and eliminating the chance of mal-seating. The aim of this study was to compare the short-term clinical and radiographic performances of a modular cup with that of a monoblock cup, with particular interest in the advent of lucent lines and their correlation with clinical outcomes. In this multi-surgeon, prospective, randomized, controlled trial, 86 patients undergoing unilateral THA were recruited. Participants were randomized to either a porous-coated, modular metal-on-polyethylene (MoP) acetabular component (n=46) or a hydroxyapatite (HA)- and titanium-coated monoblock shell with ceramic-on-ceramic (CoC) bearing (n=42). The porous-coated cup had an average pore size of 250 microns with an average volume porosity of 45%, whereas the monoblock shell had an average pore size of 300 microns with an average volume porosity of 48% and a HA coating thickness of 80 nm. There were no baseline demographic differences between both groups regarding sex, age, body mass index (BMI), or American Society of Anaesthesia (ASA) class (p>0.05). All of the sockets were under-reamed by 1 mm. Radiographs and patient-reported outcome measures (PROMs), including modified Harris Hip Score (mHHS), Western Ontario and McMaster Universities Arthritis Index (WOMAC) and University of California at Los Angeles (UCLA) Hip Score, were available for evaluation at a minimum of 2 years of follow-up. A radiolucent distance between the cup and acetabulum of ≥0.5 mm was defined as gap if it was diagnosed from outset or as radiolucency if it had sclerotic edges and was found on progressive x-ray analyses. Thirty-two gaps (69%) were found in the modular cup group and 28 (6%) in the monoblock one (p=0.001). Of the former, 17 filled the gaps whereas 15 turned into a radiolucency at final assessment. Of the latter, only 1 of the gaps turned into a radiolucency at final follow-up (p 0.05) in both groups. Only the porous-coated cup was an independent predictor of lucent lines (OR:0.052, p=0.007). No case underwent revision surgery due to acetabular loosening during the study period. Only 2 cases of squeaking were reported in the CoC monoblock shell. Both porous-coated modular and hydroxyapatite-coated monoblock cups showed successful clinical results at short-term follow-up, however, the former evidenced a significantly higher rate of radiolucent line occurrence, without any association with PROMs. Since these lines indicate the possibility of future cup loosening, longer follow-up and assessment are necessary


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 161 - 161
1 Sep 2012
Waddell JP Edwards M Lutz M Keast-Butler O Escott B Schemitsch EH
Full Access

Purpose. To review prospectively collected data on patients undergoing primary total hip arthroplasty utilizing two different cementless acetabular components. Method. All patients undergoing primary total hip replacement surgery at our institution are entered prospectively into a database which includes history and physical examination, radiology, WOMAC and SF-36 scores. The patients are re-examined, re-x-rayed and re-scored at 3 months, 6 months and 1 year after surgery and yearly thereafter. Using this database we are able to identify patients who have undergone total hip replacement using one of two geometric variants of the acetabular component. The first design is hemispherical and the second design has a peripheral rim expansion designed to increase initial press-fit stability. Results. Five hundred and twenty-seven consecutive primary total hip replacements were identified using either of the geometric variants of the acetabular component. Results at a mean of 7 years revealed a 95.6% survivorship with no significant difference between the two component designs with revision for aseptic loosening as the end point. Functional scores between the two groups of patients also demonstrated no statistically significant difference. Radiologic assessment, however, showed a difference between the two designs. The hemispherical design which matches the reamer line-to-line had 80% complete osseointegration on final radiologic review while the second design with a peripheral rim expansion had only 57% complete osseointegration. This was statistically significant. The peripherally expanded components also had a greater number of screws inserted at the time of surgery, felt by us to be a reflection of initial surgeon dissatisfaction with component stability at the time of insertion of the component. The difference in screw numbers was also statistically significant. Conclusion. Cementless acetabular components in total hip replacement have become increasingly popular because of ease of insertion, use of differing bearing surfaces and ease of revision. Longevity of implanted acetabular components appears related to some extent to the quality and extent of bone ingrowth. This study demonstrates that a hemispherical design with line-to-line contact between the acetabular component surface and the acetabular bone is statistically superior in terms of bone ingrowth and probably statistically superior in terms of initial press-fit stability when compared to a peripherally expanded component. Peripherally expanded components appear to offer little advantage over hemispherical components in terms of clinical outcome and are statistically inferior to hemispherical components in radiologic parameters at 7 years follow-up


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 25 - 25
1 Jul 2020
Galmiche R Beaulé P Salimian A Carli A
Full Access

Recently, new metallurgical techniques allowed the creation of 3D metal matrices for cementless acetabular components. Among several different products now available on the market, the Biofoam Dynasty cup (MicroPort Orthopedics® Inc., Arlington, TN, USA) uses an ultraporous Titanium technology but has never been assessed in literature. Coping with this lack of information, our study aims to assess its radiological osteointegration at two years in a primary total hip arthroplasty and compares it to a successful contemporary cementless acetabular cup. This monocentric retrospective study includes 96 Dynasty Biofoam acetabular components implanted between March 2010 and August 2014 with a minimum 2 years radiographic follow-up. Previous acetabular surgery, any septic issue or re-operation for component malposition were exclusion criteria. They were compared to 96 THA using the Trident PSL matched for age, gender, BMI and follow-up. Presence of radiolucencies and sclerotic lines were described on AP pelvis views using the classification of DeLee and Charnley. There was no statistical difference between the two groups concerning demographics and mean follow-up (p> 0.05). Shell's anteversion was similar but inclination was greater in the biofoam group (p=0.006). 27,17% of the Biofoam shells presented radiolucencies in 2 zones or more and 0% of the Trident shells. 11,96% of Biofoam cups showed radiolucencies in the 3 zones of DeLee comparing to 0% of the Trident cups. There was no statistical difference between the Biofoam group (n=54/96) and the Trident PSL group (n=57/96) in pre-operative functional scores for both WOMAC subscales and SF-12. When evaluating last follow-up PROM's, no significant differences were found comparing the entirety of both groups, 56 Biofoam and 51 Trident PSL. No difference was found either when comparing Biofoam patients with ³ 2 zones of radiolucencies (n=15) to the whole Trident group (n=51). This study raises concerns about radiologic evidence of osteointegration of the Biofoam acetabular cup. Nevertheless, these radiological findings do not find any clinical correlation considering clinical scores. Thus, it may question the real meaning of these high-rated radiolucencies, which at first sight reflect a poorer osteointegration. The first possible limitation with this study is an overinterpretation of the radiographs. Nevertheless, both observers were blinded regarding the patients groups and clinical outcomes and there was a strong inter-observer reliability. Although both cohorts were matched on their demographics and were similar on the cup anteversion, we noticed a slightly lower abduction angle in the Biofoam population. It could reduce the bone-implant coverage area and hence hinders the bony integration, but this difference was small and both groups remained in the Lewinneck security zone. Furthermore, even if patients were matched on age, gender, BMI and follow-up, other variables can influence early osteointegration (smoke status, osteoporosis) and have not been controlled even though we have no reasons to think their distribution could differ in the 2 groups. The real clinical meaning of these findings remains unknown but serious concerns are raised about the radiographic osteointegration of the Dynasty Biofoam acetabular components. Concerns are all the more lawful that this implants aim to enhance osteointegration


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 60 - 60
1 May 2013
Haddad F
Full Access

The principles of acetabular reconstruction include the creation of a stable acetabular bed, secure prosthetic fixation with freedom of orientation, bony reconstitution, and the restoration of a normal hip centre of rotation with acceptable biomechanics. Acetabular impaction grafting, particularly with cemented implants, has been shown to be a reliable means of acetabular revision. Whilst our practice is heavily weighted towards cementless revision of the acetabulum with impaction grafting, there is a large body of evidence from Tom Slooff and his successors that cemented revision with impaction grafting undertaken with strict attention to technical detail is associated with excellent long terms results in all ages and across a number of underlying pathologies including dysplasia and rheumatoid arthritis. We use revision to a cementless hemispherical porous-coated acetabular cup for most isolated cavitary or segmental defects and for many combined deficiencies. Morsellised allograft is packed in using chips of varied size and a combination of impaction and reverse reaming is used in order to create a hemisphere. There is increasing evidence for the use of synthetic grafts, usually mixed with allograft, in this setting. The reconstruction relies on the ability to achieve biological fixation of the component to the underlying host bone. This requires intimate host bone contact, and rigid implant stability. It is important to achieve host bone contact in a least part of the dome and posterior column – when this is possible, and particularly when there is a good rim fit, we have not found it absolutely necessary to have contact with host bone over 50% of the surface. Once the decision to attempt a cementless reconstruction is made, hemispherical reamers are used to prepare the acetabular cavity. Sequentially larger reamers are used until there is three-point contact with the ilium, ischium and pubis. Acetabular reaming should be performed in the desired orientation of the final implant, with approximately 200 of anteversion and 400 of abduction (or lateral opening). Removing residual posterior column bone should be avoided. Reaming to bleeding bone is desirable. Morsellised allograft is inserted and packed and/or reverse reamed into any cavitary defects. This method can also be applied to medial wall uncontained defects by placing the graft onto the medial membrane or obturator internus muscle, and gently packing it down before inserting the cementless acetabular component. Either the reamer heads or trial cups can be used to trial prior to choosing and inserting the definitive implant. The fixation is augmented with screws in all cases. Incorporation of the graft may be helped by the use of autologous bone marrow. Cementless acetabular components with impaction grafting should not be used when the host biology does not allow for stability or for bone ingrowth. This includes the severely osteopenic pelvis, pelvic osteonecrosis after irradiation, tumours, and metabolic bone disorders. They should also not be used in the presence of pelvic discontinuity unless the structure of the pelvic ring has been restored with a plate, or specialised materials/porous metals are used. The challenge of reconstituting the acetabulum depends on the degree and type of bone loss. The principles of maximising host bone-implant contact and implant stability have borne fruit in our experience with cementless revision. The advantages of bone grafting in acetabular reconstruction include the ability to restore bone stock, to rebuild a normal hip center and hip biomechanics and to increase bone stock for future revisions


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 155 - 155
1 Jan 2016
Ghosh R Paul S Rubel YSA Paul A Saha D
Full Access

Introduction. Long-term success of the cementless acetabular component has been depends on amount of bone ingrowth around porous coated surface of the implant, which is mainly depends on primary stability, i.e. amount of micromotion at the implant-bone interface. The accurate positioning of the uncemented acetabular component and amount of interference fit (press-fit) at the rim of the acetabulum are necessary to reduce the implant-bone micromotion and that can be enhancing the bone ingrowth around the uncemented acetabular component. However, the effect of implant orientations and amount of press-fit on implant-bone micromotion around uncemented acetabular component has been relatively under investigated. The aim of the study is to identify the effect of acetabular component orientation on implant-bone relative micromotion around cementless metallic acetabular component. Materials and Method. Three-dimensional finite element (FE) model of the intact and implanted pelvises were developed using CT-scan data [1]. Five implanted pelvises model, having fixed antiversion angle (25°) and different acetabular inclination angle (30°, 35°, 40°, 45° and 50°), were generated in order to understand the effect of implant orientation on implant-bone micromotion around uncemented metallic acetabular component. The CoCrMo alloy was chosen for the implant material, having 54 mm outer diameter and 48 mm bearing diameter [1]. Heterogeneous cancellous bone material properties were assigned using CT-scan data and power law relationship [1], whereas, the cortical bone was assumed homogeneous and isotropic [1]. In the implanted pelvises models, 1 mm diametric press-fit was simulated between the rim of the implant and surrounding bone. Six nodded surface-to-surface contact elements with coefficient of friction of 0.5 were assigned at the remaining portion of the implant–bone interface [1]. Twenty-one muscle forces and hip-joint forces corresponds to peak hip-joint force of a normal walking cycle (13%) were used for the applied loading condition. Fixed constrained was prescribed at the sacroiliac joint and pubis-symphysis [1]. A submodelling technique was implemented, in order to get more accurate result around implant-bone interface [1]. Results and Discussions. The peak implant-bone sliding interfacial micromotion was observed around 75 microns around superior and supero-posterior regions of the acetabulum, whereas, micromotion was below 50 microns around other regions (area). As compared to other regions, less implant-bone micromotions were observed at the central region of the acetabulum and anterior part of the acetabulum, where micromotions were varied in the range between 5 microns to 30 microns. Although, the generated peak implant-bone sliding micromotion around the uncemented acetabulum was not vary notably due to change in inclination angle of the acetabular component, changes in patterns of implant-bone micromotions were observed and as shown [Fig.1]. Results of the present study indicated that the positioning of the uncemented acetabular component have influence on patterns of implant-bone micromotion and that might have influence on bone ingrowth and long-term success of uncemented acetabular component


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 103 - 103
1 Nov 2015
Maloney W
Full Access

With cementless porous-coated acetabular replacements, extensive bone loss can occur without effecting implant stability. As a result, the surgeon is frequently faced with re-operating on a well-fixed cementless acetabular component with osteolysis and must decide whether or not to remove a well-fixed porous coated socket. A classification system and treatment algorithm has been developed to aid in management decisions regarding re-operation for polyethylene wear and pelvic osteolysis. Cases are classified into one of 3 possible categories depending on the radiographic stability of the porous coated shell and the ability to replace the polyethylene liner. Type I case; stable porous coated shell, liner replaceable; Type II case; socket stable, liner not replaceable;. Type III case; socket loose, not osseointegrated. Treatment Algorithms - Retain well-fixed shell in Type I cases and replace the liner. Debride accessible lytic lesions and graft with allograft chips. Remove the well-fixed shell in Type II case. Assess defect once the shell is removed. Reconstruction based on the bony defect present. The vast majority can be revised with a larger porous coated socket. Remove loose socket in Type III cases. Assess defect and reconstruct based on the defect. There is a greater need for more extensive grafting and the use of reconstruction rings with Type III cases. This treatment algorithm has helped the authors successfully evaluate and treat a large series of patients with polyethylene wear and pelvic osteolysis in association with porous coated acetabular components. The stability of the acetabular component and appropriate knowledge of the implant are important factors that impact surgical management


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 81 - 81
1 Jul 2014
Ries M
Full Access

Acetabular protrusio is defined radiographically as migration of the femoral head medial to Kohler's line (a line from the lateral border of the obturator foramen to the medial border of the sciatic notch). Protrusio can develop in association with metabolic bone diseases such as osteogenesis imperfecta, Marfan's Syndrome, and Paget's disease, inflammatory arthritis or osteoarthritis, tumors, or result from prior trauma. Acetabular protrusio can cause limited hip motion due to impingement of the femoral neck against the acetabular rim. When protrusio develops in association with osteoarthritis, coxa vara is often also present. Surgical treatment of acetabular protrusio during total hip arthroplasty should lateralise the center of the hip to its anatomic position. This typically can be achieved with use of a larger, slightly oversized, rim fit cementless acetabular component and medial morselised femoral head bone autograft. In cases with more severe deformity, a reconstruction cage may be required. Alternatively a medialised acetabular shell can be used with a lateralised liner. If coxa vara is also present, standard femoral component position (approximately 1cm above the lesser trochanter) can result in an increase in leg length. Careful pre-operative templating should be performed and may require more distal placement of the femoral component to avoid overlengthening the limb


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 61 - 61
1 May 2013
MacDonald S
Full Access

In North America, and for the most part globally, a cementless acetabular component with adjuvant screw fixation is the preferred technique for revision total hip arthroplasty. However, there are situations that involve massive pelvic bone loss that preclude the use of a cementless cup alone. Options include: . i). Enhanced fixation components and augments. ii). Specialised constructs (cup/cage). iii). Structural allografts. iv). Bone graft substitutes. Complex acetabular revisions present the arthroplasty surgeon with challenges that require an approach with more than one solution for all scenarios. While structural allografts have recently fallen out of favour with the increasing use of enhanced fixation components, there would still appear to be a role in the case in which bone stock restoration is a primary goal. The role of bone graft substitutes remains unclear, with supportive basic science data, but limited clinical experience to date. An algorithm will be discussed to assist in prioritising the multiple goals of acetabular reconstruction and one stock restoration


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 28 - 28
1 Mar 2017
Shin T Park S Kang K Kwon S Lim Y Moon Y Lim D
Full Access

Introduction. Recently, the combination of press-fit acetabular cup with ceramic articulation is a widely used for implanting cementless acetabular components and has been shown to provide good initial stability. However, these methods may lead to elevating stresses, changing in the bearing geometries, and increasing wear due to deformation of the cup and insert. In addition, there is a potential for failure of ceramic inserts when a large ball head was used because it should be assembled with shallow thickness of the acetabular cup. For risk reduction of it, we applied direct metal tooling (DMT) based on 3D printing for porous coating on the cup. Due to its capability of mechanical strength, DMT coated cup could be feasible to provide better stability than conventional coating. Therefore, we constructed laboratory models for deformation test simulating an press-fit situation with large ceramic ball head to evaluate stability of the DMT coated cup compared with conventional coated cup. Materials and Methods. The deformation test was performed according to the test setup described by Z. M. Jin et al. The under reaming of the cavity in a two-point pinching cavity models of polyurethane (PU) foam block (SAWBONES, Pacific Research Laboratories, USA) with a grade 30 were constructed. Titanium plasma spray (TPS) and direct metal tooling (DMT) coated acetabular cups (BENCOX Mirabo and Z Mirabo Cup, Corentec Co. Ltd., KOREA) with a 52 mm size (n=3, respectively) were used for the test. These cups were implanted into the PU foam blocks, and followed by impaction of the inserts (BIOLOX delta, Ceramtec, GE) with a 36/44 size (n=6) into the acetabupar cups as shown in Fig. 1. Roundness and inner diameter of the acetabular cups and inserts were measured using a coordinate measuring machine (BHN 305, Mitutoyo Neuss, GE) in three levels; E2, E3, and E4 (3, 5, and 7 mm below the front face, respectively). Also, these parameters of the acetabular cup were measured in two level; E1 and E5 (5 and 11 mm below the front face) as shown in Fig. 2. Changes in roundness and inner diameter of the cup and insert were measured to evaluate deformation in relation to porous coating on the acetabular cups. Results. Before implantation cups and inserts, roundness and inner diameters were shown good values. When inserts were impacted into the PU foam blocks, there are no significant change in the inner diameters of the cup and insert. However, changes in roundness of the insert which impacted into the DMT coated cup were less deformable than the TPS coated cup's, especially, in E2 level of the inserts (the nearest region of the acetabular rim) as shown in Fig. 3. Conclusions. We demonstrated that deformation of the acetabular cup was affected by the porous coating methods. Although it was limited to few specimens, our results suggested that DMT coated cup would provide more initial stability than TPS coated cup. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 29 - 29
1 Feb 2017
Baral E Trivellas M Ricciardi B Esposito C Wright T Padgett D
Full Access

Introduction. Cementless acetabular components are commonly used in primary and revision total hip arthroplasty, and most designs have been successful despite differences in the porous coating structure. Components with 2D titanium fiber mesh coating (FM) have demonstrated high survivorships up to 97% at 20 years. 1. 3D tantalum porous coatings (TPC) have been introduced in an attempt to improve osseointegration and therefore implant fixation. Animal models showed good results with this new material one year after implantation. 2. , and clinical and radiographic studies have demonstrated satisfactory outcomes. 3. However, few retrieval studies exist evaluating in vivo bone ingrowth into TPC components in humans. We compared bone ingrowth between well-fixed FM and TPC retrieved acetabular shells using backscatter scanning electron microscopy (BSEM). Methods. 16 retrieved, well-fixed, porous coated acetabulum components, 8 FM matched to 8 TPC by gender, BMI and age, all revised for reasons other than loosening and infection, were identified from our retrieval archive (Fig. 1). The mean time in-situ was 42 months for TPC and 172 for FM components. Components were cleaned, dehydrated, and embedded in PMMA. They were then sectioned, polished, and examined using BSEM. Cross-sectional slices were analyzed for percent bone ingrowth and percent depth of bone ingrowth (Fig. 2). Analysis was done using manual segmentation and grayscale thresholding to calculate areas of bone, metal, and void space. Percent bone ingrowth was determined by assessing the area of bone compared to the void space that had potential for bone ingrowth. Results. The average bone ingrowth was 19.2% for the eight FM components and 6.9% for the eight TPC components. Bone ingrowth in the FM components was quite variable, ranging from as little as 2.3% to as much as 71.6%. Conversely, the amount of bone ingrowth seen in the TCP acetabular cups was less variable, ranging from 0.4% to 13%. By design, TPC cups were more porous; the retrieved TPC cups had ∼65–75% porosity (area void space divided by total area of void space plus metal), while the retrieved FM cups had ∼40–50% porosity. No relation was found between bone ingrowth measured in the retrievals at the length of time that they had been implanted. Discussion. The TPC retrievals were well-fixed at revision surgery, despite the small percent of the coating that had bone ingrowth. Other factors, such as high coefficient of friction, leading to effective initial fixation and sufficient bone ongrowth rather than ingrowth, may impact clinical performance. A previous study of post-mortem, well-fixed retrieved FM cups found 12 ±8% bone area ingrowth. 4. , similar to our findings. Ongoing retrieval analysis will provide further insight into possible regional trends and material ingrowth differences


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 96 - 96
1 Jul 2014
Maloney W
Full Access

With cementless porous-coated acetabular replacements, extensive bone loss can occur without affecting implant stability. As a result, the surgeon is frequently faced with re-operating on a well-fixed cementless acetabular component with osteolysis and must decide whether or not to remove a well-fixed porous coated socket. A classification system and treatment algorithm has been developed to aid in management decisions regarding re-operation for polyethylene wear and pelvic osteolysis. Cases are classified into one of 3 possible categories depending on the radiographic stability of the porous coated shell and the ability to replace the polyethylene liner. Type I case; stable porous coated shell, liner replaceable; Type II case; socket stable, liner not replaceable; Type III case; socket loose, not osseointegrated. Relative Contra-indications for Liner Exchange – Type II Case - Malpositioned socket, Severely damaged shell or lock detail (consider cementing shell in place), Poor track record of the implant, Highly crosslinked polyethylene liner of adequate thickness not available, Ongrowth (as opposed to ingrowth) fixation surface. Treatment Algorithm. Type I Case: Retain well-fixed shell in Type I cases and replace the liner. Debride accessible lytic lesions and graft with allograft chips. Type II Case: Remove the well-fixed shell in Type II case. Assess defect once the shell is removed. Reconstruction based on the bony defect present. The vast majority can be revised with a larger porous coated socket. Type III Case: Remove loose socket. Assess defect and reconstruct based on the defect. There is a greater need for more extensive grafting and the use of reconstruction rings with Type III cases. This treatment algorithm has helped the authors successfully evaluate and treat a large series of patients with polyethylene wear and pelvic osteolysis in association with porous coated acetabular components. The stability of the acetabular component and appropriate knowledge of the implant are important factors that impact surgical management


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 131 - 131
1 May 2016
Pierrepont J Riddell W Miles B Baré J Shimmin A
Full Access

Introduction. The primary purpose of Total Hip Arthroplasty (THA), aside from pain relief, is to restore hip biomechanics such that the patient experiences no discernible functional deficit, while also providing an environment conducive to implant longevity. Key factors in determining a successful THA include achieving the desired pre-operative femoral offset and leg length, as well as the restoration of range of motion (ROM). Minor leg length discrepancies (LLDs), less than a centimetre, are common after THA and usually well tolerated. However, in some patients, even these small discrepancies are a source of dissatisfaction. More significant discrepancies can be a risk factor for more serious concerns such as nerve injury, abnormal gait and chronic pain. The level of the femoral neck osteotomy is a critical step in reproducing a planned femoral stem position. Frequently the femoral osteotomy is too high and can lead to an increase in leg length and varus stem positioning. If the desired implant positions are identified from preoperative 3D templating, a planned femoral osteotomy can be used as a reference to recreate the correct leg length and offset. The aim of this study was assess the accuracy of a 3D printed patient-specific guide for delivering a pre-planned femoral neck osteotomy. Methodology. A consecutive series of 33 patients, from two surgeons at a single institution, were sent for Trinity OPS pre-operative planning (Optimized Ortho, Australia). Trinity OPS is a pre-operative, dynamic, patient-specific modelling system for acetabular and femoral implant positioning. The system requires a pre-operative CT scan which allows patient specific implant sizing as well as positioning. Once the preoperative implant positioning plan was confirmed by the surgeon, a patient-specific guide was designed and printed to enable the planned level of femoral neck osteotomy to be achieved, Fig 1. All patients received a Trinity cementless acetabular component (Corin, UK) and a cementless TriFit TS femoral component (Corin, UK) through a posterior approach. The achieved level of osteotomy was confirmed postoperatively by doing a 3D/2D registration, in the Mimics X-ray Module (Materialise, Belgium), of the planned 3D resected femur to the postoperative AP radiograph, Fig 2. The image was then scaled and the difference between the planned and achieved level of osteotomy was measured (imatri Medical, South Africa), Fig 2. Results. The mean absolute difference between the planned and achieved osteotomy level was 0.7mm (range 0.1mm − 6.6mm). Only 1 patient had a difference of more than 3mm, Fig 3. Of the 33 patients, 28 had a difference of less than 1mm. Conclusions. The results from this initial series of 33 patients suggest that a 3D printed patient-specific guide can be a simple and accurate way of intraoperatively reproducing a planned femoral neck osteotomy, though there was one significant outlier. Whether the 3D planning, patient-specific guide and accurate femoral osteotomy can then be used to achieve precise leg length and offset recreation is the subject of an on-going evaluation


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 13 - 13
1 Feb 2015
Lewallen D
Full Access

There are many types of articulating surfaces in uncemented acetabular cups. Most of the designs currently available are modular, with the shell snapping into a locking mechanism of some type. An Elliptical Monoblock design has been available for 15 years and was originally made of titanium with a factory assembled compression molded polyethylene liner. Porous tantalum (trabecular metal) was used as the shell material in a subsequent more recent design and in this design the polyethylene is actually molded directly into the tantalum framework. Monoblock acetabular components do not allow particulate access to the ilium via screw holes and require no surgeon assembled locking mechanism which may increase backside wear and metallic debris. There are no holes in the socket because of the monoblock construct. Because of this absence of screw holes there is an inability to visualise the floor of the acetabulum and perfect coaptation between the shell and the acetabular floor may not occur. The presence of dome gaps of greater than 1.5mm have been noted in 5% of these components but these have not compromised implant stability and in a review of over 600 cups there has been no change in implant position. The Elliptical shape of the cup makes the mouth of the acetabular component 2mm greater than the dome so that an exceptionally strong acetabular rim fit results. Results will be reported from two major institutional series with a minimum 10-year follow-up (range 10–15 years). No pelvic osteolysis was not seen in any patient in either series. In the HSS series of 250 cases with minimum 10 year follow up there were 4 revisions for instability but none for mechanical failure. There were three femoral revisions for loosening but the cup was intact and not revised in these patients. Utilising the Livermore measurement method polyethylene wear averages 0.8mm per year (0.6mm-1.3mm) and there have been no revisions for wear. Radiographic evaluation demonstrates stable bony interface in all patients. In a Mayo series of prospectively randomised patients also at minimum 10 years there was no lysis and only one case of aseptic loosening in a beaded titanium cup. At minimum 10-year follow up two similar elliptical monoblock cementless acetabular component designs with compression molded polyethylene have confirmed the theoretical advantages of this design concept and demonstrate long term results that have been excellent to date


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 172 - 172
1 Jun 2012
Waddell J Edwards M Lutz M Keast-Butler O Escott B Schemitsch E Nikolaou V
Full Access

Purpose. To review prospectively collected data on patients undergoing primary total hip arthroplasty utilizing two different cementless acetabular components. Materials & Methods. All patients undergoing primary total hip replacement surgery at our institution are entered prospectively into a database which includes history and physical examination, radiology, WOMAC and SF-36 scores. The patients are re-examined, re-x-rayed and re-scored at 3 months, 6 months and 1 year after surgery and yearly thereafter. Using this database we are able to identify patients who have undergone total hip replacement using one of two geometric variants of the acetabular component. The first design is hemispherical and the second design has a peripheral rim expansion designed to increase initial press-fit stability. Results. Five hundred and twenty-seven consecutive primary total hip replacements were identified using either of the geometric variants of the acetabular component. Results at a mean of 7 years revealed a 95.6% survivorship with no significant difference between the two component designs with revision for aseptic loosening as the end point. Functional scores between the two groups of patients also demonstrated no statistically significant difference. Radiologic assessment, however, showed a difference between the two designs. The hemispherical design which matches the reamer line-to-line had 80% complete osseointegration on final radiologic review while the second design with a peripheral rim expansion had only 57% complete osseointegration. This was statistically significant. The peripherally expanded components also had a greater number of screws inserted at the time of surgery, felt by us to be a reflection of initial surgeon dissatisfaction with component stability at the time of insertion of the component


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 259 - 259
1 Mar 2013
McTighe T Keggi J Keppler L Aram T Bryant C Ponder C Vaughn BK McPherson E
Full Access

Introduction. Architectural changes occurring in the proximal femur after THA continues to be a problem. Stress shielding occurs regardless of fixation method. The resultant bone loss can lead to implant loosening and breakage of the implant. A new novel tissue sparing neck-stabilised stem has been designed to address these concerns. Methods. Over 1,200 stems have been implanted since April 2010 and 2012. Patient profile showed two-thirds being female with an age range between 17 to early 90s. 90% were treated for OA. This stem has been used in all Dorr bone classification (A, B, & C). Two surgical approaches were utilised (single anterior incision and standard posterior incision). All were used with a variety of cementless acetabular components and a variety of bearing surfaces (CoC, CoP, MoM, MoP). Complications were track by surgeon Members of the Tissue Sparing Study Group of the Joint Implant Surgery and Research Foundation. Complications include first year of limited clinical release. No surgeon was permitted usage without specific cadaver / surgical training. No head diameters below 32 mm were used. Observations. There is a short but definitive learning curve (2–3 cases) and an easy transition for the O.R. team due to the limited inventory of stem sizes. The three main surgical technique features are: Level of neck resection, angle of resection and rasping the proximal medial curvature of the femur. Stem usage: size 0, 1 and 2 were used for more females and 3, 4, and 5 stems for males. The neutral modular neck was the single most selected (35%), however, all angled necks totaled 65% usage. Slightly more complications in the anterior approach compared to posterior approach. We are encouraged with our initial clinical / surgical / radiographic observations and believe our results warrant not only further evaluation but expanded evaluation of this tissue conserving approach to THA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 142 - 142
1 Sep 2012
Edwards M Lutz M Keast-Butler O Escott B Schemitsch E Waddell J
Full Access

To review prospectively collected data on patients undergoing primary total hip arthroplasty utilizing two different cementless acetabular components. All patients undergoing primary total hip replacement surgery at our institution are entered prospectively into a database which includes history and physical examination, radiology, WOMAC and SF-36 scores. The patients are re-examined, re-x-rayed and re-scored at 3 months, 6 months and 1 year after surgery and yearly thereafter. Using this database we are able to identify patients who have undergone total hip replacement using one of two geometric variants of the acetabular component. The first design is hemispherical and the second design has a peripheral rim expansion designed to increase initial press-fit stability. Five hundred and twenty-seven consecutive primary total hip replacements were identified using either of the geometric variants of the acetabular component. Results at a mean of 7 years revealed a 95.6% survivorship with no significant difference between the two component designs with revision for aseptic loosening as the end point. Functional scores between the two groups of patients also demonstrated no statistically significant difference. Radiologic assessment, however, showed a difference between the two designs. The hemispherical design which matches the reamer line-to-line had 80% complete osseointegration on final radiologic review while the second design with a peripheral rim expansion had only 57% complete osseointegration. This was statistically significant. The peripherally expanded components also had a greater number of screws inserted at the time of surgery, felt by us to be a reflection of initial surgeon dissatisfaction with component stability at the time of insertion of the component. The difference in screw numbers was also statistically significant. This study demonstrates that a hemispherical design with line-to-line contact between the acetabular component surface and the acetabular bone is statistically superior in terms of bone ingrowth and probably statistically superior in terms of initial press-fit stability when compared to a peripherally expanded component. Peripherally expanded components appear to offer no advantage over hemispherical components in terms of clinical outcome and are statistically inferior to hemispherical components in radiologic parameters at 7 years follow-up