Advertisement for orthosearch.org.uk
Results 1 - 20 of 77
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 110 - 110
4 Apr 2023
Ding Y Li S Li C Chen Z Wu C
Full Access

Total joint replacement (TJR) was one of the most revolutionary breakthroughs in joint surgery. The majority studies had shown that most implants could last about 25 years, anyway, there is still variation in the longevity of implants. In US, for all the hip revisions from 2012 to 2017 in the United States, 12.0% of the patients were diagnosed as aseptic loosening. Variable studies have showed that any factor that could cause a systemic or partial bone loss, might be the risk of periprosthetic osteolysis and aseptic loosening. Breast cancer is the most frequent malignancy in women, more than 2.1 million women were newly diagnosed with breast cancer, 626,679 women with breast cancer died in 2018. It's been reported that the mean incidence of THA was 0.29% for medicare population with breast cancer in USA, of which the incidence was 3.46% in Norwegian. However, the effects of breast cancer chemotherapy and hormonotherapy, such as aromatase inhibitors (AI), significantly increased the risk of osteoporosis, and had been proved to become a great threat to hip implants survival. In this case, a 46-year-old female undertook chemotherapy and hormonotherapy of breast cancer 3 years after her primary THA, was diagnosed with aseptic loosening of the hip prosthesis. Her treatment was summarized and analyzed. Breast cancer chemotherapy and hormonotherapy might be a threat to the stability of THA prosthesis. More attention should be paid when a THA paitent occurred with breast cancer. More studies about the effect of breast cancer treatments on skeleton are required


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 44 - 44
1 Nov 2018
Baldini N
Full Access

The initiation and progression of malignant tumors are supported by their microenvironment: cancer cells per se cannot explain growth and formation of the primary or metastasis, and a combination of proliferating tumor cells, cancer stem cells, immune cells, mesenchymal stromal cells and/or cancer-associated fibroblasts all contribute to the tumor bulk. The interaction between these multiple players, under different microenvironmental conditions of biochemical and physical stimuli (i.e. oxygen tension, pH, matrix mechanics), regulates the production and biological activity of several soluble factors, extracellular matrix components, and extracellular vesicles that are needed for growth, maintenance, chemoresistance and metastatization of cancer. Both in osteosarcoma and bone metastases from carcinomas this aspect has been only recently explored. In this lecture, I will discuss the role of tumor microenvironment, with a particular focus on the mesenchymal stroma, contributing to bone tumor progression through inherent. The most recent advances in the molecular cues triggered by cytokines, soluble factors, and metabolites that are partially beginning to unravel the axis between stromal elements of mesenchymal origin and bone cancer cells, under different microenvironmental conditions, will be reviewed providing insights likely to be used for novel therapeutic approaches


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 76 - 76
1 Nov 2018
Guise T
Full Access

Breast and other cancers commonly metastasize to bone to cause bone destruction, pain, fractures hypercalcemia and muscle weakness. Recently, we described a specific molecular mechanism by which bone-derived transforming growth factor (TGF)-beta, released as a consequence of tumor-induced bone destruction causes muscle dysfunction, before the loss of muscle mass. Circulating TGF-beta induces oxidation of the ryanodine receptor (RYR1) on the sarcoplasmic reticulum of skeletal muscle to induce calcium leak and muscle weakness. Blocking TGF-beta, or its release from bone (with bisphosphonates), preventing oxidation of or stabilizing RyR1 all prevented muscle weakness in mouse models of breast cancer bone metastases. In addition to these effects on skeletal muscle, circulating TGF-beta may act on beta cells of the pancreas to impair insulin secretion and result in glucose intolerance. These and other potential systemic effects of TGF-beta released from the tumor-bone microenvironment or from cancer treatment-induced bone destruction implicate bone as a major source of systemic effects of cancer and cancer treatment. Therapy to block the systemic effects of the bone microenvironment will improve morbidity associated with bone metastases and cancer treatment


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 125 - 125
1 Mar 2021
Eggermont F van der Wal G Westhoff P Laar A de Jong M Rozema T Kroon HM Ayu O Derikx L Dijkstra S Verdonschot N van der Linden YM Tanck E
Full Access

Patients with cancer and bone metastases can have an increased risk of fracturing their femur. Treatment is based on the impending fracture risk: patients with a high fracture risk are considered for prophylactic surgery, whereas low fracture risk patients are treated conservatively with radiotherapy to decrease pain. Current clinical guidelines suggest to determine fracture risk based on axial cortical involvement of the lesion on conventional radiographs, but that appears to be difficult. Therefore, we developed a patient-specific finite element (FE) computer model that has shown to be able to predict fracture risk in an experimental setting and in patients. The goal of this study was to determine whether patient-specific finite element (FE) computer models are better at predicting fracture risk for femoral bone metastases compared to clinical assessments based on axial cortical involvement on conventional radiographs, as described in current clinical guidelines. 45 patients (50 affected femurs) affected with predominantly lytic bone metastases who were treated with palliative radiotherapy for pain were included. CT scans were made and patients were followed for six months to determine whether or not they fractured their femur. Non-linear isotropic FE models were created with the patient-specific geometry and bone density obtained from the CT scans. Subsequently, an axial load was simulated on the models mimicking stance. Failure loads normalized for bodyweight (BW) were calculated for each femur. High and low fracture risks were determined using a failure load of 7.5 × BW as a threshold. Experienced assessors measured axial cortical involvement on conventional radiographs. Following clinical guidelines, patients with lesions larger than 30 mm were identified as having a high fracture risk. FE predictions were compared to clinical assessments by means of diagnostic accuracy values (sensitivity, specificity and positive (PPV) and negative predictive values (NPV)). Seven femurs (14%) fractured during follow-up. Median time to fracture was 8 weeks. FE models were better at predicting fracture risk in comparison to clinical assessments based on axial cortical involvement (sensitivity 100% vs. 86%, specificity 74% vs. 42%, PPV 39% vs. 19%, and NPV 100% vs. 95%, for the FE computer model vs. axial cortical involvement, respectively). We concluded that patient-specific FE computer models improve fracture risk predictions of femoral bone metastases in advanced cancer patients compared to clinical assessments based on axial cortical involvement, which is currently used in clinical guidelines. Therefore, we are initiating a pilot for clinical implementation of the FE model


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 106 - 106
1 Jul 2014
Salerno M Avnet S Bonuccelli G Eramo A De Maria R Gambarotti M Gamberi G Baldini N
Full Access

Summary. Starting from human musculoskeletal sarcomas, we isolated a subset of cells that display cancer stem cell properties. The control of culture conditions is crucial to enhance the isolation of this cell population. Introduction. Cancer stem cells (CSCs) have emerged as the real responsible for the development, chemoresistance, and metastatic spread of different human cancers, including musculoskeletal sarcomas. However, unlike most leukemias and solid tumors, so far, data on musculoskeletal sarcomas refer to CSCs obtained from established cell lines, and only a few authors have reported on the isolation of CSCs from tissue samples [1-7]. Reasonably due to some peculiar features of mesenchymal tumors, including the lack of unique surface markers that identify tumor progenitors, there are still partial clues on the existence of a CSC population in these cancers. Here, we report the identification of putative CSCs in musculoskeletal sarcomas using the most general accepted isolation method, the sphere culture system. Accordingly to recent reports, we also analyzed the effects of reduced oxygen availability on the behavior of sarcoma CSCs. Patients & Methods. Between 2009 and 2012, we collected fresh tissue samples from 49 patients (25 males and 24 females, age 6–85 yr) with musculoskeletal sarcomas. Cells obtained from samples were cultured in anchorage-independent serum-starved conditions, in the presence of adequate growth factors, until the formation of floating spheres, here called ‘sarcospheres’. To obtain parental tumor cell cultures, single cells obtained from biopsies were in parallel seeded in anchorage-dependent conditions, in the presence of fetal bovine serum until the formation of cell monolayers. The obtained sarcospheres were characterised in terms of gene expression and in vivo tumorigenic potential. We then exposed sarcospheres obtained from a rhabdomyosarcoma model (RD cells) to a hypoxic environment (1% O. 2. ), and analyzed their growth and gene expression to that of sarcospheres grown at standard 21% O. 2. . Results. Using a sphere-forming assay, we established sphere cultures in 5 out of 49 cases (10.2 %). All sarcosphere cultures expressed consistent mRNA levels for OCT3/4, Nanog, and SOX2. CSCs from a chondrosarcoma and from a rhabdomyosarcoma also showed the ability to recapitulate the original tumor morphology in a mouse model. Finally, we observed that hypoxia induced a significant increase of the number and size of CSCs from RD. Discussion/Conclusion. Starting from human sarcoma biopsies and established cell lines, we were able to characterise the CSC subset of musculoskeletal sarcomas, that were isolated through the sphere system assay. These cells had stem-like properties, and showed in vivo tumorigenic ability. We also observed that exposure of CSCs to low oxygen conditions increased the number and size of spheres and the expression of stem cell-related markers, suggesting that the culture in hypoxic conditions could improve the yield of the isolation method here used, and that the oxygen availability is a crucial element in the physiological maintenance of CSCs of musculoskeletal sarcomas


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 111 - 111
1 Jul 2014
Tsukanishi T Funayama T Yamazaki M Onishi S Ozeki E Hara I Sakane M
Full Access

Summary. Photodynamic therapy with ICG lactosome and near-infrared light has phototoxic effects on human breast cancer cells. With the same total energy, phototoxic effects depend on output of irradiation light rather than irradiation time. Introduction. The phototoxic effects of indocyanine green (ICG) and near-infrared light have been studied in various fields. Plasma proteins bind strongly to ICG, which is followed by rapid clearance by the liver, resulting in no tumor selectivity after systemic administration. We have proposed a novel nanocarrier labeled with ICG (ICG lactosome) that has tumor selectivity due to its enhanced permeation and retention (EPR) effect. The aim of this study was to investigate in vitro phototoxic effects and to optimise the irradiation conditions by changing the output and time of near-infrared light as excitation light. Materials and Methods. MDA-MB-231 human breast cancer cells were seeded (2 × 10. 4. cells per well) into 96-well plates. The plates were divided (16 wells/treatment) into the following groups: control/untreated, only ICG lactosome administration (ICG lactosome), only laser irradiation (laser), and ICG lactosome administration plus laser irradiation (photodynamic therapy: PDT). Cells in the control, laser, and PDT groups were incubated in 100 μl medium for 24 h. Cells in the ICG lactosome group were incubated in 100μl medium containing 1 mg ICG lactosome for 24 h. The following day, laser group samples with 100 μl phosphate buffer solution (PBS) and PDT group samples with PBS containing 1 mg ICG lactosome were treated with laser irradiation using a near-infrared medical diode laser (λ = 810 ± 20 nm). Irradiation conditions were set to low output-/-long time (31 mW/cm. 2. -/-600 sec) and high output-/-short time (235 mW/cm. 2. -/-80 sec). The total energy density of both was 18.8 J/cm. 2. The media in these irradiated wells was replaced with fresh medium every 24 h post-irradiation. The control and ICG lactosome group wells received fresh medium every 24 h. Cells in all groups were incubated for 96 h post-treatment. Microscopic examination was performed, and cell viability was measured using a WST-1 assay every 24 h after treatment for 96 h. Mean absorbance in the WST-1 assay (an indicator of cell viability) was analyzed using the Tukey-Kramer test for comparison of multiple groups. Results. Cell viability in the high output-/-short time PDT group was significantly lower than that in the low output-/-long time PDT group at 96 h after treatment. Cell viability in the two PDT groups was significantly lower than that in the other 3 groups at each time point. Irradiation increased the temperature by 25.5°C, 11.1°C, 8.1°C, and 7.1°C in the high output-/-short time PDT, low output-/-long time PDT, high output-/-short time laser, and low output-/-long time laser groups, respectively. Discussion/Conclusion. PDT with ICG can penetrate deeper into tissue than that with Photofrin (the most widely used photosensitizer in clinical PDT), because ICG absorbs light at longer wavelengths than Photofrin. With the same total energy, inhibition of cell viability depended on irradiation output rather than irradiation time. It is reported that hyperthermia may contribute to the PDT effect if the surface irradiance exceeds 200 mW/cm. 2. We therefore believe that photodynamic and hyperthermal effects occurred in the high output-/-short time PDT group, and conclude that excitation light output rather than irradiation time may affect the photodynamic effect


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 314 - 314
1 Jul 2014
Nadhanan R Fan C Su Y Howe P Xian C
Full Access

Summary. Methotrexate chemotherapy (commonly used in treating cancers and rheumatoid arthritis) creates an inflammatory condition in bone, decreasing osteogenesis, enhancing adipogenesis, increasing osteoclastogenesis, leading to bone loss and marrow adiposity; treatment with fish oil or folinic acid counteracts these negative effects and prevents bone loss. Introduction. Chemotherapy with anti-metabolite methotrexate (MTX) is commonly used in treating cancers and rheumatoid arthritis; however it is known to cause bone loss for which currently there are no adjunct preventative treatments. Methods and Materials. Using a rat model, this study investigated the damaging effects in bones caused by daily MTX injections (0.75mg/kg) for 5 consecutive days (mimicking induction phase treatment for childhood leukaemia) and also the potential protective benefits of omega-3 fatty acid-rich fish oil at different doses (0.25, 0.5 or 0.75 mL/100g BW) in comparison to antidote folinic acid (given i.p at 0.75mg/kg 6 hours post MTX, which is clinically used to reduce MTX toxicities in soft tissues). Results. Histological analysis showed that MTX significantly reduced primary spongiosa bone height and metaphyseal trabecular bone volume. MTX also significantly reduced density of osteoblasts at the secondary spongiosa. Ex vivo differentiation assays with bone marrow stromal cell populations of treated rats revealed a significant reduction in osteogenic differentiation but an increase in adipogenesis. Consistently, RT-PCR gene expression study within the stromal cell population revealed a lower expression of osteogenic transcription factors Runx2 and Osx and bone matrix protein osteocalcin but a significantly upregulated adipogenesis-related genes FABP4 and PPARγ, indicating that MTX chemotherapy induces a switch in the differentiation potential towards adipogenesis at the expense of osteogenesis. MTX increased the density of osteoclasts within the metaphyseal bone as revealed by histological analysis and osteoclast precursor cell pool as shown by ex vivo osteoclastogenesis assay with bone marrow samples. Consistently, mRNA expression of proinflammatory and osteoclastogenic cytokines IL-1, IL-6, TNF-α, and the RANKL/OPG ratio were significantly upregulated by MTX. Supplementary treatment with fish oil (0.5mL/100g BW) or folinic acid significantly preserved metaphyseal trabecular bone volume, osteoblast density, and bone marrow stromal cell osteogenic differentiation and suppressed MTX-induced adipogenesis. These supplements also prevented MTX-induced increased osteoclast density, osteoclastogenesis, and expression of proinflammatory and osteoclastogenic cytokines. Conclusion. These results suggest that MTX chemotherapy creates an inflammatory condition in bone resulting in increased osteoclast formation and decreased osteoblast formation thus leading to bone loss, and that supplementary treatment with fish oil at 0.5mL/100g BW or folinic acid counteract these negative effects, helping to conserve bone formation, suppress bone resorption and bone marrow adiposity, and thus prevent bone loss during MTX chemotherapy


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 37 - 37
1 Dec 2022
Contartese D Salamanna F Borsari V Pagani S Sartori M Martini L Brodano GB Gasbarrini A Fini M
Full Access

Breast cancer is the most frequent malignancy in women with an estimation of 2.1 million new diagnoses in 2018. Even though primary tumours are usually efficiently removed by surgery, 20–40% of patients will develop metastases in distant organs. Bone is one of the most frequent site of metastases from advanced breast cancer, accounting from 55 to 58% of all metastases. Currently, none of the therapeutic strategies used to manage breast cancer bone metastasis are really curative. Tailoring a suitable model to study and evaluate the disease pathophysiology and novel advanced therapies is one of the major challenges that will predict more effectively and efficiently the clinical response. Preclinical traditional models have been largely used as they can provide standardization and simplicity, moreover, further advancements have been made with 3D cultures, by spheroids and artificial matrices, patient derived xenografts and microfluidics. Despite these models recapitulate numerous aspects of tumour complexity, they do not completely mimic the clinical native microenvironment. Thus, to fulfil this need, in our study we developed a new, advanced and alternative model of human breast cancer bone metastasis as potential biologic assay for cancer research. The study involved breast cancer bone metastasis samples obtained from three female patients undergoing wide spinal decompression and stabilization through a posterior approach. Samples were cultured in a TubeSpin Bioreactor on a rolling apparatus under hypoxic conditions at time 0 and for up to 40 days and evaluated for viability by the Alamar Blue test, gene expression profile, histology and immunohistochemistry. Results showed the maintenance and preservation, at time 0 and after 40 days of culture, of the tissue viability, biological activity, as well as molecular markers, i.e. several key genes involved in the complex interactions between the tumour cells and bone able to drive cancer progression, cancer aggressiveness and metastasis to bone. A good tis sue morphological and microarchitectural preservation with the presence of lacunar osteolysis, fragmented trabeculae locally surrounded by osteoclast cells and malignant cells and an intense infiltration by tumour cells in bone marrow compartment in all examined samples. Histomorphometrical data on the levels of bone resorption and bone apposition parameters remained constant between T0 and T40 for all analysed patients. Additionally, immunohistochemistry showed homogeneous expression and location of CDH1, CDH2, KRT8, KRT18, Ki67, CASP3, ESR1, CD8 and CD68 between T0 and T40, thus further confirming the invasive behaviour of breast cancer cells and indicating the maintaining of the metastatic microenvironment. The novel tissue culture, set-up in this study, has significant advantages in comparison to the pre-existent 3D models: the tumour environment is the same of the clinical scenario, including all cell types as well as the native extracellular matrix; it can be quickly set-up employing only small samples of breast cancer bone metastasis tissue in a simple, ethically correct and cost-effective manner; it bypasses and/or decreases the necessity to use more complex preclinical model, thus reducing the ethical burden following the guiding principles aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes; it can allow the study of the interactions within the breast cancer bone metastasis tissue over a relatively long period of up to 40 days, preserving the tumour morphology and architecture and allowing also the evaluation of different biological factors, parameters and activities. Therefore, the study provides for the first time the feasibility and rationale for the use of a human-derived advanced alternative model for cancer research and testing of drugs and innovative strategies, taking into account patient individual characteristics and specific tumour subtypes so predicting patient specific responses


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 73 - 73
4 Apr 2023
Tolgyesi A Huang C Akens M Hardisty M Whyne C
Full Access

Bone turnover and microdamage are impacted by skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. This study aimed to establish an understanding of microdamage accumulation and load to failure in healthy and osteolytic vertebrae following cancer treatment (stereotactic body radiotherapy (SBRT), zoledronic acid (ZA), or docetaxel (DTX)). Forty-two 6-week old athymic female rats (Hsd:RH-Foxn1rnu, Envigo) were studied; 22 were inoculated with HeLa cervical cancer cells through intracardiac injection (day 0). Animals were randomly assigned to four groups: untreated (healthy=5, osteolytic=6), SBRT on day 14 (healthy=6, osteolytic=6), ZA on day 7 (healthy=4, osteolytic=5), and DTX on day 14 (healthy=5, osteolytic=5). Animals were euthanized on day 21. L1-L3 motion segments were compression loaded to failure and force-displacement data recorded. T13 vertebrae were stained with BaSO. 4. and µCT imaged (90kVp, 44uA, 4.9µm) to visualize microdamage location and volume. Damage volume fraction (DV/BV) was calculated as the ratio of BaSO. 4. to bone volume. Differences in mean load-to-failure were compared using three-way ANOVA (disease status, treatment, cells injected). Differences in mean DV/BV between treatment groups were compared using one-way ANOVA. Treatment had a significant effect on load-to-failure (p=0.004) with ZA strengthening the healthy and osteolytic vertebrae. Reduced strength post SBRT seen in the metastatic (but not the healthy) group may be explained by greater tumor involvement secondary to higher cell injection concentrations. Untreated metastatic samples had higher DV/BV (16.25±2.54%) compared to all treatment groups (p<0.05) suggesting a benefit of treatment to bone quality. Focal and systemic cancer treatments were shown to effect load-to-failure and microdamage accumulation in healthy and osteolytic vertebrae. Developing a better understanding of how treatments effect bone quality and mechanical stability is critical for effective management of patients with spinal metastases


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 36 - 36
2 Jan 2024
Bagur-Cardona S Perez-Romero K Stiliyanov K Calvo J Gayà A Barceló-Coblijn G Rodriguez RM Gomez-Florit M
Full Access

Macrophages (Mφ) are immune cells that play a crucial role in both innate and adaptive immunity as they are involved in a wide range of physiological and pathological processes. Depending on the microenvironment and signals present, Mφ can polarize into either M1 or M2 phenotypes, with M1 macrophages exhibiting pro-inflammatory and cytotoxic effects, while M2 macrophages having immunosuppressive and tissue repair properties. Macrophages have been shown to play key roles in the development and progression or inhibition of various diseases, including cancer. For example, macrophages can stimulate tumor progression by promoting immunosuppression, angiogenesis, invasion, and metastasis. This work aimed to investigate the effect of extracellular vesicles (EVs)-derived from polarized macrophages on an osteosarcoma cell line. Monocytes were extracted from buffy coats and cultured in RPMI medium with platelet lysate or M-CSF. After 6 days of seeding, Mφ were differentiated into M1 and M2 with INF-γ/LPS and IL-4/IL-13, respectively. The medium with M1 or M2 derived EVs was collected and EVs were isolated by differential centrifugation and size exclusion chromatography and its morphology and size were characterized with SEM and NTA, respectively. The presence of typical EVs markers (CD9, CD63) was assessed by Western Blot. Finally, EVs from M1 or M2-polarized Mφ were added onto osteosarcoma cell cultures and their effect on cell viability and cell cycle, proliferation, and gene expression was assessed. The EVs showed the typical shape, size and surface markers of EVs. Overall, we observed that osteosarcoma cells responded differentially to EVs isolated from the M1 and M2-polarized Mφ. In summary, the use of Mφ-derived EVs for the treatment of osteosarcoma and other cancers deserves further study as it could benefit from interesting traits of EVs such as low immunogenicity, nontoxicity, and ability to pass through tissue barriers. Acknowledgements: Carlos III Health Institute and the European Social Fund for contract CP21/00136 and project PI22/01686


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 92 - 92
1 Nov 2021
Baldini N
Full Access

In the past decades, a huge amount of effort has been devoted to translate evidence based on standard preclinical models of bone tumours to effective tools for clinical applications. Although cancer is a genetic disease, hence the emphasis on -omics approaches, the complexity of cancer tissue, a mix of competing clones of transformed elements that react differently to microenvironmental stimuli, may hardly be reproduced by standard approaches. Cost, biological differences and ethical concerns are increasingly recognized as weaknessess of animal models. To overcome these limitations and provide reliable, reproducible, and affordable tools for predicting the effectiveness of treatments, environmental-controlled 3D cultures and co-cultures (spheroids, organoids) coupled with microfluidics and advanced imaging have recently being considered as effective instrument to increase knowledge on the pathophysiology of bone tumours and define effective therapeutic solutions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 64 - 64
11 Apr 2023
Steijvers E Xia Z Deganello D
Full Access

Accidents, osteoporosis or cancer can cause severe bone damage requiring grafts to heal. All current grafting methods have disadvantages including scarcity and infection/rejection risks. An alternative is therefore needed. Hydroxyapatite/calcium carbonate (HA/CC) scaffolds mimic the mineral bone composition but lack growth factors present in auto- and allografts, limiting their osteoinductive capacity. We hypothesize that this will increase the osteogenicity and osteoinductivity of scaffolds through the presence of growth factors. The objectives of this study are to develop and mass-produce grafts with enhanced osteoinductive capacity. HA/CC scaffolds were cultured together with umbilical cord mesenchymal stem cells in bioreactors so that they adhere to the surface and deposit growth factors. Cells growing on the scaffolds are confirmed by Alamar blue assays, SEM, and confocal microscopy. ELISA and IHC are used to assess the growth factor content of the finished product. It has been confirmed that cells attach to the scaffolds and proliferate over time when grown in bioreactors. Dynamic seeding of cells is clearly advantageous for cell deposits, equalizing the amount of cells on each scaffold granule. Hydroxyapatite/calcium carbonate scaffolds support cell-growth. This should be confirmed by further research, including Quantification of BMPs and other indicators of osteogenic differentiation such as Runx2, osteocalcin and ALP is pending, and amounts are expected to be increased in enhanced scaffolds and in-vivo implantation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 42 - 42
2 Jan 2024
Oliveira V
Full Access

Primary bone tumors are rare, complex and highly heterogeneous. Its diagnostic and treatment are a challenge for the multidisciplinary team. Developments on tumor biomarkers, immunohistochemistry, histology, molecular, bioinformatics, and genetics are fundamental for an early diagnosis and identification of prognostic factors. The personalized medicine allows an effective patient tailored treatment. The bone biopsy is essential for diagnosis. Treatment may include systemic therapy and local therapy. Frequently, a limb salvage surgery includes wide resection and reconstruction with endoprosthesis, biological or composites. The risk for local recurrence and distant metastases depends on the primary tumor and treatment response. Cancer patients are living longer and bone metastases are increasing. Bone is the third most frequently location for distant lesions. Bone metastases are associated to pain, pathological fractures, functional impairment, and neurological deficits. It impacts survival and patient quality of life. The treatment of metastatic disease is a challenge due to its complexity and heterogeneity, vascularization, reduced size and limited access. It requires a multidisciplinary treatment and depending on different factors it is palliative or curative-like treatment. For multiple bone metastases it is important to relief pain and increases function in order to provide the best quality of life and expect to prolong survival. Advances in nanotechnology, bioinformatics, and genomics, will increase biomarkers for early detection, prognosis, and targeted treatment effectiveness. We are taking the leap forward in precision medicine and personalized care


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 64 - 64
2 Jan 2024
Rodrigues M Almeida A Miranda M Vinhas A Gonçalves AI Gomes M
Full Access

Chronic inflammatory events have been associated to almost every chronic disease, including cardiovascular-, neurodegenerative- and autoimmune- diseases, cancer, and host-implant rejection. Given the toll of chronic inflammation in healthcare and socioeconomical costs developing strategies to resolve and control chronic states of inflammation remain a priority for the significant benefit of patients. Macrophages (Mφ) hold a central role both in the initiation and resolution of inflammatory events, assuming different functional profiles. The outstanding features of Mφ counting with the easy access to tissues, and the extended networking make Mφ excellent candidates for precision therapy. Moreover, sophisticated macrophage-oriented systems could offer innovative immune-regulatory alternatives to effectively regulate chronic environments that traditional pharmacological agents cannot provide. We propose magnetically assisted systems for balancing Mφ functions at the injury site. This platform combines polymers, inflammatory miRNA antagonists and magnetically responsive nanoparticles to stimulate Mφ functions towards pro-regenerative phenotypes. Strategies with magnetically assisted systems include contactless presentation of immune-modulatory molecules, cell internalization of regulatory agents for functional programming via magnetofection, and multiple payload delivery and release. Overall, Mφ-oriented systems stimulated pro-regenerative functions of Mφ supporting magnetically assisted theranostic nanoplatforms for precision therapies, envisioning safer and more effective control over the distribution of sensitive nanotherapeutics for the treatments of chronical inflammatory conditions. Acknowledgements: ERC CoG MagTendon No.772817; FCT Doctoral Grant SFRD/BD/144816/2019, and TERM. RES Hub (Norte-01-0145-FEDER-022190)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 92 - 92
11 Apr 2023
O'Boyle M Fraser E Dickson S Mansbridge D
Full Access

Neck of femur fractures are a common trauma presentation and patients with a history of malignancy are sent for long leg femur views (LLF), to exclude a distal lesion which would alter the management plan (Intra-medullary nail/Long stem Hemiarthroplasty). The aim of this is to identify incidence of malignancy on LLF views, the length of time in between each xray (XR) and to identify demographics. Data was retrospectively collected from 01/01/2021 to 31/01/2021 from a single centre. All patients admitted to the Queen Elizabeth University Hospital had their electronic records (Bluespier, PACS, Clinical Portal) accessed. These confirmed if patients had a past medical history of malignancy, if they had LLF view and the time differences between diagnostic pelvis XR and LLF XR. A total of 784 patients were identified in the specified time period. Of these, 138 were identified with a malignancy and there were 85 LLF views completed. LLF views diagnosed 1 patient with known prostate cancer that had a new distal femoral metastasis (Incidence = 1.28 cases per 1000). This patient underwent further imaging (MRI Femur) and received a long stem hip hemiarthroplasty. The average length of wait between the images was 9 hours 27 minutes. LLF views can alter management of patients with malignancy and are therefore useful to perform. There can be a long delay between each image. Therefore we recommend imaging tumour with common bony metastasis (Renal, Thyroid, Breast, Prostrate, Lung) and other remaining tumours with known secondary metastasis. Imaging primary low risk (eg basal cell carcinoma) can lead to long delays in a frail patient cohort and consideration should be given to rationalise appropriate use of resources


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 44 - 44
2 Jan 2024
Zorba B Boyacioğlu Ö Çağlayan T Reçber T Eroğlu İ Nemutlu E Korkusuz P
Full Access

Osteosarcoma is common in children and adolescents with high mortality due to rapid progression. Therapeutic approaches for osteosarcoma are limited and may cause side effects. Cannabinoid ligands exert antiproliferative, apoptotic effect in cancer cells via CB1/2 or TRPV1 receptors. In this study, we hypothesized that synthetic specific CB2R agonist CB65 might have an antiproliferative and apoptotic effect on osteosarcoma cell lines in vitro. If so, this agent might be a chemotherapeutic candidate for osteosarcoma, with prolonged release, increased stability and bioavailability when loaded into a liposomal system. We first determined CB2 receptor expression in MG63 and Saos-2 osteosarcoma cells by qRT- PCR and FCM. CB65 reduced proliferation in osteosarcoma cells by WST-1 and RTCA. IC50 for MG63 and Saos-2 cells were calculated as 1.11×10-11 and 4.95×10-11 M, respectively. The antiproliferative effect of CB65 on osteosarcoma cells was inhibited by CB2 antagonist AM630. IC50 of CB65 induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 hours, respectively by FCM. CB65 was loaded into the liposomal system by thin film hydration method and particle size, polydispersity index, and zeta potentials were 141.7±0.6 nm, 0.451±0.026, and -10.9±0.3 mV, respectively. The CB65-loaded liposomal formulation reduced MG63 and Saos-2 cell proliferation by RTCA. IC50 of CB65 and CB65-loaded liposomal formulation induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 hours, respectively, by FCM. Scratch width was higher in CB65 and CB65-loaded liposome-treated cells compared to control. In this study, the real-time antiproliferative and apoptotic effect of synthetic specific CB2 agonist CB65 in osteosarcoma cell lines was demonstrated for the first time, and the real time therapeutic window was determined. The CB65-loaded liposomal formulation presents a potential treatment option that can be translated to clinic following its validation within animal models and production under GMP conditions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 94 - 94
11 Apr 2023
Funk G Horn E Kilway K Parrales A Iwakuma T McIff T
Full Access

Osteosarcoma and other types of bone cancers often require bone resection, and backfill with cement. A novel silorane-based cement without PMMA's drawbacks, previously developed for dental applications, has been reformulated for orthopedic use. The aim of this study is to assess each cement's ability to elute doxorubicin, maintain its potency, and maintain suitable weight-bearing strength. The silorane-based epoxy cement was synthesized using a platinum-based Lamoreaux's catalyst. Four groups of cement were prepared. Two PMMA groups, one without any additives, one with 200 mg of doxorubicin. Two silorane groups: one without any additive, one with doxorubicin, added so that the w% of drug into both cements were equal. Pellets 6 × 12 mm were used for testing (ASTM F451). n=10. Ten pellets from each group were kept dry. All others were placed into tubes containing 2.5 mL of PBS and stored at 37 °C. Elution from doxorubicin-containing groups were collected every day for 7 days, with daily PBS changeout. Antibiotic concentrations were determined via HPLC. Compressive strength and compressive modulus of all groups were determined for unsoaked specimens, and those soaked for 7 and 14 days. MTT assays were done using an MG63 osteosarcoma cell line. Both cements were able to elute doxorubicin over 7 days in clinically-favorable quantities. For PMMA samples, the incorporation of doxorubicin was shown to significantly affect the compressive strength and modulus of the samples (p<0.01). Incorporation of doxorubicin into silorane had no significant effect on either (p>.05). MTT assays indicated that doxorubicin incorporated into the silorane cement maintained its effectiveness whereas that into PMMA did not. At the dosing used, both cements remained above the 70 MPa. Both PMMA and silorane-based cements can deliver doxorubicin. Doxorubicin, however, interacts chemically with PMMA, inhibiting polymerization and lowering the chemotherapeutic's effectiveness


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 59 - 59
14 Nov 2024
Cristofolini L bròdano BB Dall’Ara E Ferenc R Ferguson SJ García-Aznar JM Lazary A Vajkoczy P Verlaan J Vidacs L
Full Access

Introduction. Patients (2.7M in EU) with positive cancer prognosis frequently develop metastases (≈1M) in their remaining lifetime. In 30-70% cases, metastases affect the spine, reducing the strength of the affected vertebrae. Fractures occur in ≈30% patients. Clinicians must choose between leaving the patient exposed to a high fracture risk (with dramatic consequences) and operating to stabilise the spine (exposing patients to unnecessary surgeries). Currently, surgeons rely on their sole experience. This often results in to under- or over-treatment. The standard-of-care are scoring systems (e.g. Spine Instability Neoplastic Score) based on medical images, with little consideration of the spine biomechanics, and of the structure of the vertebrae involved. Such scoring systems fail to provide clear indications in ≈60% patients. Method. The HEU-funded METASTRA project is implemented by biomechanicians, modellers, clinicians, experts in verification, validation, uncertainty quantification and certification from 15 partners across Europe. METASTRA aims to improve the stratification of patients with vertebral metastases evaluating their risk of fracture by developing dedicated reliable computational models based on Explainable Artificial Intelligence (AI) and on personalised Physiology-based biomechanical (VPH) models. Result. The METASTRA-AI model is expected to be able to stratify most patients with limited effort end cost, based on parameters extracted semi-automatically from the medical files and images. The cases which are not reliably stratified through the AI model, are examined through a more detailed and personalised biomechanical VPH model. These METASTRA numerical tools are trained through an unprecedentedly large multicentric retrospective study (2000 cases) and validated against biomechanical ex vivo experiments (120 specimens). Conclusion. The METASTRA decision support system is tested in a multicentric prospective observational study (200 patients). The METASTRA approach is expected to cut down the indeterminate diagnoses from the current 60% down to 20% of cases. METASTRA project funded by the European Union, HEU topic HLTH-2022-12-01, grant 101080135


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 40 - 40
1 Dec 2022
Lipreri M Vecchione R Corrado B Avnet S Perut F Baldini N Graziani G
Full Access

Vertebral metastases are the most common type of malignant lesions of the spine. Although this tumour is still considered incurable and standard treatments are mainly palliative, the standard approach consists in surgical resection, which results in the formation of bone gaps. Hence, scaffolds, cements and/or implants are needed to fill the bone lacunae. Here, we propose a novel approach to address spinal metastases recurrence, based on the use of anti-tumour metallic-based nanostructured coatings. Moreover, for the first time, a gradient microfluidic approach is proposed for the screening of nanostructured coatings having anti-tumoral effect, to determine the optimal concentration of the metallic compound that permits selective toxicity towards tumoral cells. Coatings are based on Zinc as anti-tumour agent, which had been never explored before for treatment of bone metastases. The customized gradient generating microfluidic chip was designed by Autodesk Inventor and fabricated from a microstructured mould by using replica moulding technique. Microstructured mould were obtained by micro-milling technique. The chip is composed of a system of microfluidic channels generating a gradient of 6 concentrations of drug and a compartment with multiple arrays of cell culture chambers, one for each drug concentration. The device is suitable for dynamic cultures and in-chip biological assays. The formation of a gradient was validated using a methylene blue solution and the cell loading was successful. Preliminary biological data on 3D dynamic cultures of stromal cells (bone-marrow mesenchymal stem cells) and breast carcinoma cells (MDA-MB-231) were performed in a commercial microfluidic device. Results showed that Zn eluates had a selective cytotoxic effect for tumoral cells. Indeed, cell migration and cell replication of treated tumoral cells was inhibited. Moreover, the three-dimensionality of the model strongly affected the efficacy of Zn eluates, as 2D preliminary experiments showed a high cytotoxic effect of Zn also for stromal cells, thus confirming that traditional screening tests on 2D cultured cells usually lead to an overestimation of drug efficacy and toxicity. Based on preliminary data, the customized platform could be considered a major advancement in cancer drug screenings as it also allows the rapid and efficient screening of biomaterials having antitumor effect


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 97 - 97
17 Apr 2023
Gupta P Butt S Mahajan R Galhoum A Lakdawala A
Full Access

Prompt mobilisation after the Fracture neck of femur surgery is one of the important key performance index (‘KPI caterpillar charts’ 2021) affecting the overall functional outcome and mortality. Better control of peri-operative blood pressure and minimal alteration of renal profile as a result of surgery and anaesthesia may have an implication on early post-operative mobilisation. Aim was to evaluate perioperative blood pressure measurements (duration of fall of systolic BP below the critical level of 90mmHg) and effect on the post-operative renal profile with the newer short acting spinal anaesthetic agent (prilocaine and chlorprocaine) used alongside the commonly used regional nerve block. 20 patients were randomly selected who were given the newer short acting spinal anaesthetic agent along with a regional nerve block between May 2019 and February 2020. Anaesthetic charts were reviewed from all patients for data collection. The assessment criteria for perioperative hypotension: Duration of systolic blood pressure less than 90 mm of Hg and change of pre and post operative renal functions. Only one patient had a significant drop in systolic BP less than 90mmHg (25 minutes). 3 other patients had a momentary fall of systolic BP of less than 5 minutes. None of the above patients had mortality and had negligible change in pre and post op renal function. Only one patient in this cohort had elevation of post-operative creatinine levels but did not have any mortality. Only 1 patient died on day 3 post operatively who had multiple comorbidities and was under evaluation for GI cancer. Even in this patient the peri-operative blood pressure was well maintained (never below 90mmHg systolic) and post-operative renal function was also shown to have improved (309 pre-operatively to 150 post-operatively) in this patient. The use of short-acting spinal anaesthesia has shown to be associated with a better control of blood pressure and end organ perfusion, less adverse effects on renal function leading to early mobilisation and a more favourable patient outcome with reduced mortality, earlier mobilisation, shorter hospital stay and earlier discharge in this elderly patient cohort