The effect of head injury on systemic physiology, including bone healing is still a topic of vivid discussion. We aimed to investigate whether in patients with long bone fractures the presence of head injury is associated with excessive
Lengthening of the humerus is now an established
technique. We compared the complications of humeral lengthening
with those of femoral lengthening and investigated whether or not
the
Abstract. Introduction. Vitamin D deficiency in the UK is well documented − 30–40% of the population. It is an essential component of calcium metabolism and adequate levels are important for bone healing. Studies have demonstrated an overall prevalence of vitamin D deficiency/insufficiency at 77% in trauma patients aged >18, deficiency alone was 39%. Adequate vitamin D levels have a positive effect on bone mineral density and
Introduction. Total hip arthroplasty (THA) using short design stem is surging with increasing movement of minimally invasive techniques. Short stems are easier to insert through small incisions preserving muscles. We have used these types of short stems since 2010. Almost all of the patients have shown good clinical results. However, two patients developed fatigue fractures on femurs post operatively. We have reviewed the clinical and radiographic results of these patients. Patients and methods. From April 2010, we have performed 621 THAs with short design stems, Microplasty. R. , Biomet, using a muscle preservation approach, the Direct Anterior Approach (DAA). The age ranged from 31 to 88 years old. Case1: 56y.o. male, BMI 23.1kg/m. 2. Preoperative diagnosis was bilateral osteoarthritis. Simultaneous THAs were performed on bilateral hips. He was allowed to bear as much weight as he could tolerate using an assistive device immediately after surgery, and followed standard hip precautions for the first 3 weeks. He was discharged from hospital seven days after surgery and returned to his job two weeks after surgery. He noticed sudden left thigh pain three weeks after surgery without any obvious cause. Crutches were recommended to partially bear his weight. Six weeks after surgery, a fracture line became visible on the radiographs and new
Aim. Debridement, Antibiotics, Irrigation, and implant Retention (DAIR) is a surgical treatment protocol suitable for some patients with fracture related infection (FRI). Clinically relevant pre-clinical models of DAIR are scarce and none have been developed in large animals. Therefore, this project aimed to develop a large animal model for FRI including a DAIR approach and compare outcomes after 2 or 5 weeks of infection. Method. Swiss Alpine sheep (n=8), (2–6 years, 50–80 kg) were included in this study. This study was approved by cantonal Ethical authorities in Chur, Switzerland. A 2 mm osteotomy was created in the tibia and fixed with a 10-hole 5.5 mm steel plate. Subsequently, 2.5 mL of saline solution containing 10. 6. CFU/mL of Staphylococcus aureus MSSA (ATCC 25923) was added over the plate. Sheep were observed for 2 (n=3) or 5 weeks (n=5) until revision surgery, during which visibly infected or necrotic tissues were removed, and the wound flushed with saline. All samples were collected for bacterial quantification. After revision surgery, the sheep were treated systemically for 2 weeks with flucloxacillin and for 4 weeks with rifampicin and cotrimoxazole. After 2 further weeks off antibiotics, the animals were euthanized. Bacteriological culture was performed at the end of the study. Bone cores were isolated from the osteotomy site and processed for Giemsa & Eosin and Brown and Brenn staining. A radiographical examination was performed every second week. Results. Bacteriological evaluation of the retrieved samples during revision surgery showed no significant difference between the 2 vs 5 weeks infection periods in term of total CFU counts. At the end of the study, radiographical examination showed
It has been previously shown that Low-Magnitude High-Frequency Vibration (LMHFV) is able to enhance ovariectomy-induced osteoporotic fracture healing in rats. Fracture healing begins with the inflammatory stage, and all subsequent stages are regulated by the infiltration of immune cells such as macrophages and the release of inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10). Therefore, the aim of this study was to investigate the effect of LMFHV treatment on the inflammatory response in osteoporotic fracture healing. In this study, ovariectomy-induced osteoporotic and sham-operated closed-femoral fracture SD-rats were randomized into three groups: sham control (SHAM), ovariectomized control (OVX-C) or ovariectomized vibration (OVX-V) (n=36, n=6 per group per time point). LMHFV (35Hz, 0.3g) was given 20 min/day and 5 days/week to OVX-V group. SHAM operation and ovariectomy were performed at 6-month and closed femoral fracture was performed at 9-month. Callus morphometry was determined by callus width from weekly radiography. Local expressions of inducible nitric oxide synthase (iNOS) (macrophage M1 marker), CD206 (macrophage M2 marker), TNF-α, IL-6 and IL-10 were detected by immunohistochemistry and quantified by colour threshold in ImageJ, assessed at weeks 1 and 2 post-fracture. Significant difference between groups was considered at p≤0.05 by one-way ANOVA.
Aim. Treatment of infected and non-infected non-unions remain a major challenge after orthopedic fracture-related surgery. In clinical practice, several revision surgeries are usually required, including a radical debridement and exchange of implants, to control or even eradicate the infection to finally achieve bone healing. However, a clear treatment algorithm in clinical practice may be difficult to follow due to the heterogeneous patient population. Thus, so controlled settings for research purposes is better achieved in standardized animal studies. So far, there exists no multi-stage animal model that can be realistically transferred to the clinical situation in humans. The importance of such a model is obvious in order to be able to investigate different therapy concepts for infected and non-infected non unions. Methods. In 20 female Sprague-Dawley rats, a critical size defect by a femur osteotomy with 5 mm width was done. The periosteum at the fracture zone was cauterized proximal and distal to the osteotomy to achieve an hypovascularized situation. After randomization, 10 animals were intramedullary infected with a multisensible Staph. aureus strain (10. 3. CFU). After 5 weeks, a second surgery was performed with removing the K-wire, debridement of the osteotomy-gap and re-osteosynthesis with an angle-stable plate. After further 8 weeks all rats were euthanized and underwent biomechanical testing to evaluate bone consolidation or delayed union, respectively. Additional micro-CT analysis, histological, and histomorphometric analysis were done to evaluate bone consolidation or delayed union, respectively, by the score of Lane and Sandhu and to quantify
Aim. Staphylococcus aureus is the leading pathogen in fracture-related infection (FRI). Virulence factors vary between different strains, which may have a decisive influence on the course of infection. Previous in vitro experiments, in vivo testing in wax moth larvae, and genomic analysis of S. aureus isolates from FRI identified a low- and high-virulent strain. These findings correlated with the acute course of FRI induced by the high-virulent pathogen, whereas the low-virulent strain caused a chronic FRI in its human host. However, the role of bacterial virulence in FRI is not completely understood. Therefore, the present study aimed to compare the identified high- and low-virulent S. aureus isolates in a murine FRI model. Method. Skeletally mature C57Bl/6N mice received a femoral osteotomy stabilized by titanium locking plates. FRI was established by inoculation of either high-virulent S. aureus EDCC 5458 or low-virulent S. aureus EDCC 5464 in the fracture gap. Mice were euthanized 4 and 14 days after surgery, respectively. Severity and progression of infection were assessed in terms of clinical presentation, quantitative bacteriology, semiquantitative histopathologic evaluation, and serum cytokine profile. Results. Quantitative bacteriological results 4 days after surgery revealed a higher bacterial load in soft tissue samples in high-virulent infected animals (p =0.026). Mice infected with the high-virulent strain also displayed higher rates of organ dissemination (24/36 organs in high-virulent, versus 5/36 organs in low-virulent infected animals; p <0.0001). In the histopathological assessment, bacterial agglomerations at the fracture ends were present to a greater extent in the high-virulent cohort and barely detectable in low-virulent infected mice. In both cohorts, no bone healing was observed after 4 days. On day 14, bone healing at the fracture site was visible in low-virulent infected animals, whereas
Background:. In recent times there has been an increasing trend towards surgical intervention in paediatric femoral shaft fractures with widening indications. Titanium elastic nails and external fixation are two widely practiced procedures for such fractures. Materials & Methods:. We report a series of 48 children with 52 fractured femurs, 18 being managed by TENS and 34 in a linear external fixator. Children were aged between 3.5 to 12 years and the fractures were stabilised after an optimal closed reduction on a normal theatre table under image intensifier control. Fracture site distribution was nearly uniform in both the groups. Though most children were assigned to any of the groups at random, external fixators were applied on many younger children and those having financial constraints. Results:. The average age of children in the TENS group was 7.4 years and the average fracture healing time was 9.4 weeks. In the ex-fix group the figures were 5.6 years and 8.6 weeks respectively. Fixators were removed when good
Aim. To evaluate the efficacy of bone marrow derived stromal cells (BMSC) for the treatment of non-unions in fractures. Methods. An ethically approved single centre randomised control trial recruited 35 patients for treatment of non-unions with BMSC during 2006–2010. Autologous BMSC were culture expanded at the Good Manufacturing Practice (GMP) standard Oscell® laboratory in the hospital. Following in vitro expansion- cells in autologous serum and serum alone were randomised for insertion at one of the two fracture sides by StratOs® computer software. Patients and the operating surgeon were blinded to the side of cell insertion. Such method of randomisation created internal controls at the fracture sites- one side receiving the cell (‘test side’) and other, not (‘control’). Serial radiographs extending up to an average of twelve months were evaluated by six independent assessors blinded to side of cell insertion.
We report the results of using a combination of fixator-assisted nailing with lengthening over an intramedullary nail in patients with tibial deformity and shortening. Between 1997 and 2007, 13 tibiae in nine patients with a mean age of 25.4 years (17 to 34) were treated with a unilateral external fixator for acute correction of deformity, followed by lengthening over an intramedullary nail with a circular external fixator applied at the same operating session. At the end of the distraction period locking screws were inserted through the intramedullary nail and the external fixator was removed. The mean amount of lengthening was 5.9 cm (2 to 8). The mean time of external fixation was 90 days (38 to 265). The mean external fixation index was 15.8 days/cm (8.9 to 33.1) and the mean bone healing index was 38 days/cm (30 to 60). One patient developed an equinus deformity which responded to stretching and bracing. Another developed a drop foot due to a compartment syndrome, which was treated by fasciotomy. It recovered in three months. Two patients required bone grafting for poor
Aim. Silver is known for its excellent antimicrobial activity, including activity against multiresistant strains. The aim of the current study was to analyze the biocompatibility and potential influence on the fracture healing process a silver-coating technology for locking plates compared to silver-free locking plates in a rabbit model. Methods. The implants used in this study were 7-hole titanium locking plates, and plasma electrolytic oxidation (PEO) silver coated equivalents. A total of 24 rabbits were used in this study (12 coated, 12 non-coated). An osteotomy of the midshaft of the humerus was created with an oscillating saw and the humerus stabilized with the 7 hole locking plates with a total of 6 screws. X-rays were taken on day 0, week 2, 4, 6, 8, and 10 for continuous radiographical evaluation of the fracture healing. All animals were euthanized after 10 weeks and further assessment was performed using X-rays, micro-CT, non-destructive four-point bending biomechanical testing and histology. Furthermore, silver concentration was measured in the kidney, liver, spleen and brain. Results. X-rays showed normal undisturbed healing of the osteotomy in all animals without any differences between the two groups over the entire X-ray analysis over 10 weeks (Figure 1).
Aim. Treatment regimens for fracture-related infection (FRI) often refer to the classification of Willenegger and Roth, which stratifies FRIs based on time of onset of symptoms. The classification includes early (<2 weeks), delayed (2–10 weeks) and late (>10 weeks) infections. Early infections are generally treated with debridement and systemic antibiotics but may not require implant removal. Delayed and late infections, in contrast, are believed to have a mature biofilm on the implant, and therefore, treatment often involves implant removal. This distinction between early and delayed infections has never been established in a controlled clinical or preclinical study. This study tested the hypothesis that early and delayed FRIs respond differently to treatment comprising implant retention. Method. A complete humeral osteotomy in 16 rabbits was fixed with a 7-hole-LCP and inoculated with Staphylococcus aureus. The inoculum size (2×106 colony forming units per inoculum) was previously tested without antibiotic intervention to result in infection of all animals persisting for at least 12 weeks.4 The infection was allowed to develop for either 1 (early group) or 4 (delayed group) weeks (n= 8 per group) after bacterial inoculation. At these time points, treatment involved debridement and irrigation of the wound (no implant removal) and quantitative bacteriological evaluation of the removed materials. Systemic antibiotics were administered according to a common clinical regimen (2 weeks: rifampin + nafcillin, followed by 4 weeks: rifampin + levofloxacin). After an additional one-week antibiotic washout period, animals were euthanized and a quantitative bacteriology of soft tissue, implant (after sonication) and bone was performed. Results. Greater numbers of bacteria were recovered by debridement and irrigation in the early group compared with the delayed group, which may indicate retraction of the infection in the delayed stage. Treatment was successful in both the early and delayed group: all animals in both groups were infection free at euthanasia. Furthermore, all osteotomies had healed, although animals in the delayed group displayed irregular
The forefoot is affected less frequently than the hindfoot in rheumatoid patients but comes to surgical reconstruction more frequently. The classical rheumatoid deformities of hallux valgus and clawed lesser toes are made more painful with destructive arthritis, plantar prominence of metatarsal heads and
Background. Implants based on the polyetheretherketon (PEEK) polymer have been developed in the last decade as an alternative to conventional metallic devices. PEEK devices may provide several advantages over the use of conventional orthopedic materials, including the lack of metal allergies, radiolucency, low artifacts on magnetic resonance imaging scans and the possibility of tailoring mechanical properties. The purpose of this study was to evaluate the clinical results at mean 24-month follow-up using a new plate made of carbon-fiber-reinforced polyetheretherketon (CFR-PEEK) for the treatment of distal radius fractures. Materials and methods. We performed a prospective study including all patients who were treated for unstable distal radius fracture with a CFR-PEEK volar fixed angle plate. We included 70 consecutive fractures of AO types B and C that remained displaced after an initial attempt at reduction. The fractures were classified according to the AO classification: 35 fractures were type C1, 13 were type C2, 6 were type C3, 5 were type B1 and 11 were type B2. Results. All fractures healed, and radiographic union was observed at an average of 6 weeks. The final Disabilities of Arm, Shoulder and Hand score was 5.2 points. The average grip strength, expressed as a percentage of the contralateral limb, was 94 %. Three cases of hardware breakage were reported. Two cases were due to intraoperative plate rupture caused by the attempt to achieve the reduction of the fracture in 1 case and while inserting a distal screw in the other case. In the last case hardware breakage was caused by a fall on the injuried arm 1 week after surgery. No cases of loss of the surgically achieved fracture reduction were documented. Hardware removal was performed in 3 cases, for the occurrence of extensor tenosynovitis in 2 patients and tenosynovitis of flexor pollicis longus in 1 case. Conclusion. The major advantage of CFR-PEEK plate is its radiolucency. This characteristic allows direct visualization of osseous
Gold standard for the management of non-union is open surgical debridement, stabilisation, and autologous bone grafting. LIPUS is becoming more popular, yet the evidence is still inconclusive. LIPUS involves the use of ultrasound at the fracture site with little risk to the patient. The purpose of this study was to assess effectiveness and cost benefit of LIPUS in the management of non-unions post sustaining an open fracture. We retrospectively reviewed 29 patients with open fractures with established non-union undergoing LIPUS since 2010 (4 females, mean age 48) range 3–27 months, mean 9 months, either post injury or last intervention. All were tertiary referrals, sustaining injuries to the following areas; Tibial 21, Femur 6, Humerus 2, Radius 1. Definitive fixation being; 9 TSF's, 11 IMN's, 9 plates. (undergoing a mean 2.4 procedures). Aside from sustaining an open fracture, 7 had risk factors for non-unions 5 smokers, 2 NSAID's. Failure of treatment was based on undertaking bone grafting. In 28 patients (1 lost to follow up) union was achieved in 71% (mean 157 days). All were screened for infection, 4 had organisms on enrichment culture. 8 (5 Gustillo Anderson Grade 3A/B) injuries did not show evidence of
To elucidate the molecular biology of fracture healing, murine models are preferred. We performed a study with the first internal fixation system that allows studying murine fracture healing in a controlled mechanical environment, to characterise the timing of the fracture healing cascade with this model, based on a histological evaluation. Femoral osteotomies were performed in 68 male C57BL/six mice and stabilised with locking internal fixation plates in either stiff, or defined, flexible configurations. Healing progression was studied at 10 time points between 3 and 42 days post- surgery. After surgery, mice were radiographed to confirm the correct implant positioning. After sacrifice, the extracted femora were processed for decalcified histology. Thin sections were taken as serial transverse sections and stained for subsequent histomorphometric analysis and three-dimensional reconstruction of the different fracture callus tissues. The surgery was successful in 62 animals. Only six6 (8.8%) animals had to be sacrificed due to complications during surgery. The post-operative radiographs demonstrated a high reproducibility of implant positioning and no implant failure or screw loosening occurred during the experimental period. The improved consistency in surgical technique leading to more uniform results represents a key advantage of this system over other mouse fracture healing models. As such, it may allow a reduction in the sample size needed in future murine fracture healing studies. The histological evaluation confirmed the lack of a periosteal callus, and exclusively endosteal, intramembraneous bone formation in the bones stabilised with the stiff implants. The bones that were stabilised with the more flexible internal fixation plates showed additional endochondral ossification with extensive, highly asymmetrical, periosteal
Treatment of large segmental defects in the extremities is challenging. A segmental tibial defect model in a large animal can provide a basis through which in vivo testing of materials and techniques for use in non-unions and severe trauma cases can be examined. This study reports such a model. Six aged ewes (> 5 years) were used following ethical approval. A 5cm piece of the mid diaphysis of the left tibia was removed including its associated periosteum. The tibia was stabilized with an 8mm stainless steel cross locked intramedullary nail and all tissues closed in their respective layers. Animals were euthanised at 12 weeks following surgery and evaluated using radiographic, micro-computed tomography (CT), soft tissue and hard tissue histology techniques. Three weeks post operatively one of the intramedullary nails failed through the first of the distal two cross locking screw holes, the sheep was euthanised and the tibia was harvested. Early signs of
Introduction. Osteosynthesis with open reduction techniques in comminuted subtrochanteric femoral fractures can further devitalise fragments and lead to increased rate of non-union, infection, and implant failure. Therefore, these fractures require indirect reduction techniques that do not further damage the vascular supply or soft tissue attachments of the fragments. Dynamic condylar screw (DCS) using indirect reduction and minimally invasive technique may be a good alternative to avoid these complications in such fractures. Material & methods. Forty-three patients with comminuted subtrochanteric fractures underwent indirect reduction and biological internal fixation with DCS. Mean age was 43.9 (range 25–65) years. There were six Seinsheimer type III, 15 type IV and 22 type V fractures. Results. All fractures united without bone grafting at average union time of 16.16 weeks (range, 13–22) weeks. There were no cases of non-union or implant failure at mean follow-up of 25.13 months. We observed technical difficulties in six patients such as: inaccurate placement of guide pin in two patients, difficulty in sliding the plate due to obesity in one patient, difficulty in gliding barrel plate over condylar screw in one patient and technical failure in a further two patients. Seven patients had mean limb length discrepancy of 1.48 cm (range, 1–2). Mean Harris hip score was 88.2 (range 80–90) points. Two patients had coxa vara and persistent limp. Discussion. Stripping of the soft tissues to the lateral cortex is kept to a minimum in indirect reduction. The vitality of the medial fragments is not further compromised since they are not exposed. Viable bone rapidly unites by
Purpose. Angiogenesis and osteogenesis are essential for bone growth, fracture repair, and bone remodeling. VEGF has an important role in bone repair by promoting angiogenesis and osteogenesis. In our previous study, endothelial progenitor cells (EPCs) promoted bone healing in a rat segmental bone defect as confirmed by radiological, histological and microCT evaluations (Atesok, Li, Schemitsch 2010); EPC treatment of fractures resulted in a significantly higher strength by biomechanical examination (Li, Schemitsch 2010). In addition, cell-based VEGF gene transfer has been effective in the treatment of segmental bone defects in a rabbit model (Li, Schemitsch et al 2009); Purpose of this study: Evaluation of VEGF gene expression after EPC local therapy for a rat segmental bone defect. Method. Rat bone marrow-derived EPCs were isolated from the rat bone marrow by the Ficoll-paque gradient centrifuge technique. The EPCs were cultured for 7 to 10 days in endothelial cell growth medium with supplements (EGM-2-MV-SingleQuots, Clonetics). and collected for treatment of the rat segmental bone defect. EPCs were identified by immunocytochemistry staining with primary antibodies for CD34, CD133, FLK-1, and vWF. A total of fifty six rats were studied. A five millimeter segmental bone defect was created in the middle 1/3 of each femur followed by mini plate fixation. The treatment group received 1×106 EPCs locally at the bone defect and control animals received saline only. Seven control and seven EPC treated rats were included in each group at 1, 2, 3 and 10 weeks. Animals were sacrificed at the end of the treatment period, and specimens from the fracture gap area were collected and immediately frozen. Rat VEGF mRNA was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantified by VisionWorksLS. All measurements were performed in triplicate. Results. Cultured EPCs at 1 week showed positive staining for CD34, CD133, Flk-1 and vWf markers. The EPC group had a greater VEGF expression than the control group at week 1, 2 and 3 but not at week 10. Three VEGF isoforms were detected in this rat model: VEGF120, VEGF164 and VEGF188. VEGF120 and VEGF164 levels peaked at two weeks, while VEGF188 levels peaked at three weeks. All three VEGF isoform levels were low at ten weeks. Conclusion. EPC-based therapy for a segmental bone defect results in increased VEGF expression during the early period of fracture repair. In addition, the specific VEGF isoform may be a key regulator of the bone healing process. These findings demonstrate that EPCs promote fracture healing by increasing VEGF levels and thus stimulating angiogenesis, a process that is essential for early