Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 156 - 156
1 Nov 2021
Uthraraj NS Prakash M
Full Access

Introduction and Objective. The Cartilage Oligomeric Matrix Protein (COMP) is a glycoprotein that is elevated in patients with osteoarthritis. The elevation increases linearly with the radiological grade of osteoarthritis. The objective of this study was to study the levels of COMP in knee osteoarthritis in the Indian population and to correlate (establish ranges) with the specific radiological grade of osteoarthritis (Kellgreen and Lawrence grading). Since the radiological classification is subjective, the COMP levels would serve as a more objective way of classifying osteoarthritic joints. Materials and Methods. We analysed the COMP levels by the Enzyme Linked Immunosorbent Assay (ELISA) method in 100 patients presenting to the outpatient clinic of our hospital, after obtaining due approvals. The radiographs of these patients were classified according to the Kellgreen-Lawrence grading by a senior orthopaedic surgeon. Results. We found a linear correlation with the COMP levels and the radiological classification as established in the previous studies. We were also able to establish a range of COMP levels for each classification stage. Conclusions. This study would provide means to classify osteoarthritis without the need for radiographs thus minimising radiation to the patient. It would also help us to predict the radiological findings thus serving as a guide for further treatment planning


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 147 - 147
11 Apr 2023
Baker M Clinton M Lee S Castanheira C Peffers M Taylor S
Full Access

Osteoarthritis (OA) of the equine distal interphalangeal joint (DIPJ) is a common cause of lameness. MicroRNAs (miRNAs) from biofluids such as plasma and synovial fluid make promising biomarker and therapeutic candidates. The objectives of this study are (1) Identify differentially expressed (DE) miRNAs in mild and severe equine DIPJ OA synovial fluid samples and (2) Determine the effects of DE miRNAs on equine chondrocytes in monolayer culture. Synovial fluid samples from five horses with mild and twelve horses with severe DIPJ OA were submitted for RNA-sequencing; OA diagnosis was made from MRI T2 mapping, macroscopic and histological evaluation. Transfection of equine chondrocytes (n=3) was performed using the Lipofectamine® RNAiMAX system with a negative control and a miR-92a mimic and inhibitor. qPCR was used to quantify target mRNA genes. RNA-seq showed two miRNAs (miR-16 and miR-92a) were significantly DE (p<0.05). Ingenuity Pathway Analysis (IPA) identified important downstream targets of miR-92a involved in the pathogenesis of osteoarthritis and so this miRNA was used to transfect equine chondrocytes from three donor horses diagnosed with OA. Transfection was successfully demonstrated by a 1000-20000 fold increase in miR-92a expression in the equine chondrocytes. There was a significant (p<0.05) increase in COMP, COL3A1 and Sox9 in the miR-92a mimic treatment and there was no difference in ADAMTS-5 expression between the miR-92 mimic and inhibitor treatment. RNA-seq demonstrated miR-92a was downregulated in severe OA synovial fluid samples which has not previously been reported in horses, however miR-92a is known to play a role in the pathogenesis of OA in other species. Over expression of miR-92a in equine chondrocytes led to significantly increased COMP and Sox9 expression, consistent with a chondrogenic phenotype which has been identified in human and murine chondrocytes


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 88 - 88
1 Mar 2021
Elahi SA Fehervary H Famaey N Jonkers I
Full Access

To unravel the relation between mechanical loading and biological response, cell-seeded hydrogel constructs can be used in bioreactors under multi-axial loading conditions that combines compressive with torsional loading. Typically, considerable biological variation is observed. This study explores the potential confounding role of mechanical factors in multi-directional loading experiments. Indeed, depending on the material properties of the constructs and characteristics of the mechanical loading, the mechanical environment within the constructs may vary. Consequently, the local biological response may vary from chondrogenesis in some parts to proteoglycan loss in others. This study uses the finite element method to investigate the effects of material properties of cell-seeded constructs and multiaxial loading characteristics on local mechanical environment (stresses and strains) and relate these to chondrogenesis (based on maximum compressive principal strain (MCPS) - Zahedmanesh et al., 2014) and proteoglycan loss (based on fluid velocity (FV) - Orozco et al., 2018). The construct was modelled as a homogenized poro-hyperelastic (using a Neohookean model and Darcys law) cylinder of 8mm diameter and equal height using Abaqus. The bottom surface was fully constrained and dynamic unconfined compression and torsion loading were applied to the top surface. Free fluid flow was allowed through the lateral surface. We studied the sensitivity of the maximum values of the target parameters at 9 key locations to the material parameters and loading characteristics. Six input parameters were varied in preselected ranges: elastic modulus (E=[20,80]kPa), Poissons ratio (nu=[0.1,0.4]), permeability (k=[1,4]e-12m4/Ns), compressive strain (Comp=[5,20]%), rotation (Rot=[5,20]°) and loading frequency (Freq=[1,4]Hz). A full-factorial design of experiment method was used and a first-order polynomial surface including the interactions fitted the responses. MCPS varies between 7.34% and 33.52% and is independent of the material properties (E, nu and k) and Freq but has a high dependency on Comp and a limited dependency on Rot. The maximum value occurs centrally in the construct, except for high values of Rot and low Comp where it occurs at the edges. FV vary between 0.0013mm/sec and 0.1807mm/sec and dominantly depends on E, k and Comp, while its dependency on Rot and Freq is limited. The maximum value usually occurs at the edges, although at high Freq it may move towards the center of the superficial and deep zones. This study can be used as a guideline for the optimized selection of mechanical parameters of hydrogel for cell-seeded constructs and loading conditions in multi-axial bioreactor studies. In future work, we will study the effect in intact and injured cartilage explants


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 5 - 5
2 Jan 2024
Karaçoban L Gizer M Fidan BB Kaplan O Çelebier M Korkusuz P Turhan E Korkusuz F
Full Access

Osteoarthritis (OA) is a disabling disease depriving the quality of life of patients. Mesenchymal stem cells (MSCs) are recently used to modify the inflammatory and degenerative cascade of the disease. Source of MSCs could change the progression and symptoms of OA due to their different metabolomic activities. We asked whether MSCs derived from the infrapatellar fat (IPF), synovium (Sy) and subcutaneous (SC) tissues will decrease inflammatory and degenerative markers of normal and OA chondrocytes and improve regeneration in culture. Tissues were obtained from three male patients undergoing arthroscopic knee surgery due to sports injuries after ethical board approval. TNFa concentration decreased in all MSC groups (Sy=156,6±79, SC=42,1±6 and IPF=35,5±3 pg/ml; p=0,036) on day 14 in culture. On day seven (Sy=87,4±43,7, SC=23±8,9 and IPF=14,7±3,3 pg/ml, p=0,043) and 14 (Sy=29,1±11,2, SC=28,3±18,5 and IPF=20,3±16,2 pg/ml, p=0,043), MMP3 concentration decreased in all groups. COMP concentration changes however were not significant. Plot scores of tissues for PC2-13,4% were significantly different. Based on the results of liquid chromatography-mass spectrometry (LC-MS) metabolomics coupled with recent data processing strategies, clinically relevant seven metabolites (L-fructose, a-tocotrienol, coproporphyrin, nicotinamide, bilirubin, tauro-deoxycholic acid and galactose-sphingosine) were found statistically different (p<0.05 and fold change>1.5) ratios in tissue samples. Focusing on these metabolites as potential therapeutics could enhance MSC therapies. Acknowledgment: Hacettepe University, Scientific Research Projects Coordination Unit (#THD-2020-18692) and Turkish Society of Orthopedics and Traumatology (#TOTBID-89) funded this project. Feza Korkusuz MD is a member of the Turkish Academy of Sciences (TÜBA)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 135 - 135
2 Jan 2024
Füllemann P Jörimann T Bella E Stoddart M Matthys R Verrier S
Full Access

Bone healing outcome is highly dependent on the initial mechanical fracture environment [1]. In vivo, direct bone healing requires absolute stability and an interfragmentary strain (IFS) below 2% [2]. In the majority of cases, however, endochondral ossification is engaged where frequency and amplitude of IFS are key factors. Still, at the cellular level, the influence of those parameters remains unknown. Understanding the regulation of naïve hMSC differentiation is essential for developing effective bone healing strategies. Human bone-marrow-derived MSC (KEK-ZH-NR: 2010–0444/0) were embedded in 8% gelatin methacryol. Samples (5mm Ø x 4mm) were subjected to 0, 10 and 30% compressive strain (5sec compression, 2hrs pause sequence for 14 days) using a multi-well uniaxial bioreactor (RISystem) and in presence of chondro-permissive medium (CP, DMEM HG, 1% NEAA, 10 µM ITS, 50 µg/mL ascorbic acid, and 100 mM Dex). Cell differentiation was assessed by qRT-PCR and histo-/immunohistology staining. Experiments were repeated 5 times with cells from 5 donors in duplicate. ANOVA with Tukey post-hoc correction or Kurskal-Wallis test with Dunn's correction was used. Data showed a strong upregulation of hypertrophic related genes COMP, MMP13 and Type 10 collagen upon stimulation when compared to chondrogenic SOX9, ACAN, Type 2 collagen or to osteoblastic related genes Type 1 Collagen, Runx2. When compared to chondrogenic control medium, cells in CP with or without stimulation showed low proteoglycan synthesis as shown by Safranine-O-green staining. In addition, the cells were significantly larger in 10% and 30% strain compared to control medium with 0% strain. Type 1 and 10 collagens immunostaining showed stronger Coll 10 expression in the samples subjected to strain compared to control. Uniaxial deformation seems to mainly promote hypertrophic-like chondrocyte differentiation of MSC. Osteogenic or potentially late hypertrophic related genes are also induced by strain. Acknowledgments: Funded by the AO Foundation, StrainBot sponsored by RISystemAG & PERRENS 101 GmbH


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 44 - 44
2 Jan 2024
Ciftci E Grad S Alini M Li Z
Full Access

Osteoarthritis (OA) is the most prevalent degenerative joint disease that is a leading cause of disability worldwide. Existing therapies of OA only address the symptoms. Liraglutide is a well-known anti-diabetic medication that is used to treat type 2 diabetes and obesity. In inflammatory and post-traumatic OA animal models, liraglutide has demonstrated anti-inflammatory, pain-relieving, and cartilage-regenerating effects1 . The objective of this study is to investigate liraglutide's ability to reduce inflammation and promote anabolism in human OA chondrocytes in vitro. Pellets formed with human OA chondrocytes were cultured with a chondrogenic medium for one week to form cartilage tissue. Afterward, pellets were cultured for another 2 weeks with a chondropermissive medium. The OA group was treated with IL-1β to mimic an inflammatory OA condition. The drug group was treated with 0.5 or 10 µM liraglutide. On days 0, 1, and 14, pellets were collected. Conditioned medium was collected over the 2 weeks culture period. The gene and protein expression levels of regenerative and inflammatory biomarkers were evaluated and histological analyzes were performed. Results showed that the nitric oxide release of the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups were lower than the OA group. The DNA content of the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups were higher than the OA group on day 14. The RT-qPCR results showed that the anabolism (ACAN, COMP, and COL2) markers were higher expressed in the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups when compared with the OA group. The inflammation (CCL-2 and IL-8) markers and catabolism markers (MMP-1, MMP-3, ADAMTS4, and ADAMTS5) had lower expression levels in the OA + liraglutide groups compared to the OA group. The histomorphometric analysis (Figure 1) supported the RT-qPCR results. The results indicate that liraglutide has anabolic and anti-inflammatory effects on human OA chondrocyte pellets. Acknowledgments: This project has received funding from the Eurostars-2 joint program with co-funding from the European Union Horizon 2020 research and innovation program. The funding agencies supporting this work are (in alphabetical order of participating countries): France: BPI France; Germany: Project Management Agency (DLR), which acts on behalf of the Federal Ministry of Education and Research (BMBF); The Netherlands: Netherlands Enterprise Agency (RVO); Switzerland: Innosuisse (the Swiss Innovation Agency). For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 8 - 8
1 Mar 2021
Hulme CH Perry J Roberts S Gallacher P Jermin P Wright KT
Full Access

Abstract. Objectives. The ability to predict which patients will improve following routine surgeries aimed at preventing the progression of osteoarthritis is needed to aid patients being stratified to receive the most appropriate treatment. This study aimed to investigate the potential of a panel of biomarkers for predicting (prior to treatment) the clinical outcome following treatment with microfracture or osteotomy. Methods. Proteins known to relate to OA severity, with predictive value in autologous cell implantation treatment or that had been identified in proteomic analyses (aggrecanase-1/ ADAMTS-4, cartilage oligomeric matrix protein (COMP), hyaluronic acid (HA), Lymphatic Vessel Endothelial Hyaluronan Receptor-1, matrix metalloproteinases-1 and −3, soluble CD14, S100 calcium binding protein A13 and 14-3-3 protein theta) were assessed in the synovial fluid (SF) of 19 and 13 patients prior to microfracture or osteotomy, respectively, using commercial immunoassays. Levels of COMP and HA were measured in the plasma of these patients. To find predictors of postoperative function, multiple linear regression analyses were performed. Results. Linear regression analyses demonstrated that a lower concentration of HA in pre-operative SF was predictive of improved knee function (higher Lysholm score) following microfracture surgery. Further, lower pre-operative activity of ADAMTS-4 in SF was a significant, independent predictor of higher post-operative Lysholm score (improved joint function) following osteotomy surgery. Conclusion. This study is novel in identifying biomarkers with the potential to predict clinical outcome in patients treated with microfracture or osteotomy of the knee. Lower concentrations of HA and undetectable activity of ADAMTS-4 in the joint fluid of individuals with cartilage defects/early-OA may be used in algorithms to stratify patients to the most appropriate surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 13 - 13
1 Mar 2021
Mak CC To K Fekir K Brooks R Khan W
Full Access

Abstract. Objective. Mesenchymal stem cells (MSCs) and chondrocytes have both been crucial in trials for cartilage repair, and there has been growing interest into their respective secretomes owing to their role in chondrogenic crosstalk. This has been studied by in vitro co-culture studies, yet the optimal ratio of seeding MSCs in co-culture has been understudied. Methods. Our study utilised an in vitro autologous co-culture of p0 adipose-derived MSCs (AMSCs) and articular chondrocytes derived from Kellgren-Lawrence Grade III/IV osteoarthritic knee joints (n=5). To investigate whether a large proportion of MSCs could be stimulated by a small number of chondrocytes, we seeded these MSCs at increasing logarithmic ratios to the number of chondrocytes at 1:1, 10:1, and 100:1. The AMSCs were phenotyped by a panel of MSC surface markers in flow cytometry, and allowed to undergo trilineage differentiation. Gene expression following in vitro co-culture was quantified by RT-qPCR with a panel comprising COL1A1, COL2A1, COL10A1, L-SOX5, SOX6, SOX9, ACAN, HSPG2, and COMP for chondrogenesis. Experiments were performed in triplicate. Results. The AMSCs had CD105, CD73, CD90, and heterogenous CD34 expression but not CD45, CD14, CD19, and HLA-DR expression in flow cytometric phenotyping, and demonstrated differentiation into chondrogenic, osteogenic, and adipogenic lineages. The chondrogenic gene expression profiles from co-cultures of larger MSC-to-chondrocyte ratio such as 10:1 and 100:1 were significantly lower than the expression profile of the 1:1 co-culture. No significant difference was observed between the 10:1 and 100:1 co-cultures. Conclusion. These findings suggest that the optimal ratio of co-culturing MSCs and chondrocytes approaches 1:1, and that seeding at larger ratios would diminish the overall chondrogenic expression and crosstalk involved. This therefore has implications in the limited efficacy of MSCs in in vitro co-culture studies or in existing trials of intra-articular and subchondral MSC injections, owing to a suboptimal in situ ratio of MSCs and chondrocytes. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 64 - 64
1 Mar 2021
Korntner S Pieri A Pugliese ZWE Zeugolis D
Full Access

The fibrocartilaginous enthesis displays a complex interface between two mechanically dissimilar tissues, namely tendon and bone. This graded transition zone consists of parallel collagen type I fibres arising from the tendon and inserting into bone across zones of fibrocartilage with aligned collagen type I and collagen type II fibres and mineralised fibrocartilage. Due the high stress concentrations arising at the interface, entheses are prone to traumatic and chronic overuse injuries such as rotator cuff and anterior cruciate ligament (ACL) tears. Treatment strategies range from surgical reattachment for complete tears and conservative treatments (physiotherapy, anti-inflammatory drugs) in chronic inflammatory conditions. Generally, the native tissue architecture is not re-established and mechanically inferior scar tissue is formed. Current interfacial tissue engineering approaches pose scaffold-associated drawbacks and limitations, such as foreign body response. Using a thermo-responsive electrospun scaffold that provides architectural signals similar to native tissues and can be removed prior to implantation, we aim to develop an ECM-rich, cell-based implant for tendon-enthesis regeneration. Alcian blue staining revealed highest sGAG deposition in cell (human adipose derived stem cells) sheets grown on random electrospun fibres and lowest sGAG deposition in collagen type I sponges. Cells did not show an equal distribution throughout the collagen type II scaffolds but tended to form localised aggregates. Thermo-responsive electrospun fibres with random and aligned fibre orientation provided an adequate three-dimensional environment for chondrogenic differentiation of multilayer hADSC-sheets shown by high ECM-production, especially high sGAG deposition. Chondrogenic cell sheets showed increased expression of SOX9, COL2A1, COL1A1, COMP and ACAN after 7 days of chondrogenic induction when compared to pellet culture. Anisotropic fibres enabled the generation of aligned chondrogenic cell sheets, shown by cell and collagen fibre alignment. Thermoresponsive electrospun fibres showed high chondro-inductivity due to their three-dimensionality and therefore pose a promising tool for the generation of scaffold-free multilayer constructs for tendon-enthesis repair within short culture periods. Aligned chondrogenic cell sheets mimic the zonal orientation of the native enthesis as the fibrocartilaginous zone exhibits high collagen alignment


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 128 - 128
1 Nov 2018
Stanco D Soldati G Ciardelli G
Full Access

Tendon injuries are common and current therapies often are unsuccessful. Cell-based therapy using mesenchymal stem cells (MSCs) seems to be the most promising approach to heal tendon. Moreover, providing safe and regulated cell therapy products to patients requires adherence to good manufacturing practices (GMP). Adipose-derived stem cells (n=4) were cultured in 6-well plates coated with type-I collagen in a chemically defined serum-free medium (SF) or a xenogenic-free human pooled platelet lysate medium (hPL). At passage 4, ASCs were induced to tendon lineage for 14 days using 100ng/ml CTGF, 10ng/ml TGFβ3, 50ng/ml BMP12 and 50µg/ml ascorbic acid in the SF (SF-TENO) or in the hPL (hPL-TENO) medium. Cells cultured without any supplements are used as control. Morphological appearance, cell viability and FACS were performed in undifferentiated cells to evaluate the xenogenic-free culture conditions; the gene and protein expression were performed by RT-PCR and immunofluorescence to evaluate to expression of stem cell- and tendon-related markers upon cell differentiation. SF-CTRL and hPL-CTRL showed similar viability and MSC's surface proteins and expressed the stemness markers NANOG, OCT4 and Ki67. Moreover, both SF-TENO and hPL-TENO expressed significant higher levels of SCX, COL1A1, COL3A1, COMP, MMP3 and MMP13 genes already at 3d (p<0.05) respect to CTRLs. Scleraxis and collagen were also detected in both SF-TENO and hPL-TENO at protein level in higher amount than CTRLs. In conclusion, ASCs exposed to CTGF, BMP12, TGFb3 and AA in both serum and xenogenic-free media possess similar tenogenic differentiation ability moving forward the GMP-compliant approaches for the clinical use of ASCs


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 116 - 116
1 Nov 2018
Sun YC Lian WS Ko JY Wang FS
Full Access

Osteophyte deposition and subchondral bone damage are notable features of osteoarthritis (OA). Deregulated mineralization contributes to osteophyte and subchondral irregularity. The microRNA-29 (miR-29) family is associated with arthritic disorders. This study is aimed to investigate miR-29a function to OA osteophyte formation and subchondral integrity. Intact and damaged articular cartilage in patients with end-stage knee OA who required total knee arthroplasty were harvested to probe miR-29a, cartilage, and mineralized matrix expression using RT-PCR and in situ hybridization. Osteophyte volume and subchondral morphometry of collagenase-induced OA knees in mice were quantified using μCT and histomorphometry. Increased bone matrix expression (collagen I and bone alkaline phosphatase) and reduced cartilage matrix (collagen II and aggrecan) along with low miR-29a expression existed in human OA specimens. Aged miR-29a knockout mice showed spontaneous osteophyte formation and articular cartilage erosion. In primary articular chondrocytes, miR-29a deficiency significantly reduced cartilage matrix synthesis, whereas von Kossa staining-positive mineralized matrix production was increased. Of interest, the severity of collagenase-induced osteophyte accumulation and subchondral damage along with serum cartilage breakdown products CTX-II and COMP levels were significantly compromised in mice overexpressing miR-29a. Intra-articularly injecting miR-29a significantly reduced osteophyte volume and subchondral integrity and retained cartilage morphology in collagenase-injured knees. Reduced miR-29a signalling worsens osteophyte and subchondral destruction in OA through increasing mineralized matrix formation of chondrocytes. Restoring miR-29a shields joints from cartilage degradation, osteophyte and subchondral destruction. This study conveys new mechanistic underlying OA osteophyte pathogenesis and shines light on the remedial potential of miR-29a to OA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 34 - 34
1 Apr 2018
Sun YC Lian WS Ko JY Wang FS
Full Access

Introduction. Osteoarthritis (OA) of the knee, a prevalently degenerative joint disorder provoked by articular cartilage loss, accounts for the leading cause of total knee arthroplasty. Autophagy is an indispensable intracellular event that maintains chondrocyte survival and metabolism. MicroRNAs are non-coding small RNAs participating in tissue morphogenesis, remodeling, and homeostasis. This study was undertaken to investigate the effect of microRNA-128 (miR-128) knockdown on the development of OA knees. Materials/Methods. Knee joints in rats were subjected to anterior cruciate ligament transection (ACLT) for inducing OA. Articular cartilage, synovium, and subchondral bone microarchitecture were assessed by OARSI scoring system, histomorphometry, and μCT imaging. Chondrocyte autophagy in terms of the expression of autophagic markers Atg4, Atg12, microtubule-associated protein 1 light chain 3 (LC3), and autophagosome formation was verified. Expression of microRNA, mRNA and signaling transduction were quantified with in situ hybridization, RT- quantitative PCR, and immunoblotting. Results. Chondrocytes in the affected knees showed weak expression of autophagic markers Atg4, Atg12, and LC3-II abundances in conjunction with significant increases in OARSI scores and a 2.5-fold elevation in miR-128 expression. The gain of miR-128 signaling in intact joints through intra-articular injection of miR-128 precursor resulted in 1.8–2.1-fold elevations in serum cartilage breakdown products CTX-II and COMP concentrations. miR-128 overexpression caused the joints to show evident chondrocyte apoptosis as evidenced by TUNEL staining concomitant with severe cartilage damage. Of note, antisense oligonucleotide knockdown of miR-128 (miR-128-AS) enabled the affected knee joints to show minor responses to the ACLT escalation of autophagy dysfunction in chondrocytes, cartilage breakdown histopathology, and OARSI scores. Administration with miR-128-AS also attenuated the ACLT-induced synovial membrane thickening, hyper-angiogenesis, and hypercellularity, which subsequently alleviated osteophyte accumulation, subchondral plate destruction, and trabecular microstructure loss. Conclusion. miR-128 signaling impairs chondrocyte autophagy, which ramps up chondrocyte apoptosis and OA knee development. This study highlights an emerging miR-128 knockdown strategy that sustains cartilage microarchitecture integrity and thereby delays OA knee pathogenesis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 30 - 30
1 Jan 2017
Kuenzler M Akeda M Ihn H McGarry M Zumstein M Lee T
Full Access

Posterolateral rotatory instability (PLRI) is the most common type of elbow instability. It is caused by an insufficiency of the lateral ligamentous complex, which consists mainly of the radial collateral ligament (RCL) and the lateral ulnar collateral ligament (LUCL). Investigate the influence of serial sectioning of the lateral ligamentous complex on elbow stability in a cadaveric model of PLRI. Kinematics of six fresh frozen cadaveric elbow specimens were measured by digitizing anatomical marks with a Microscribe 3DLX digitizing system (Revware Inc, Raleigh, NC). Each specimen was tested under four conditions: Intact, LUCL tear, LUCL and RCL tear, and complete Tear (LUCL, RCL and capsule tear). Each specimen was tested in 30°, 60° and 90° elbow flexion angles. Varus- laxity was measured in supination, pronation, and neutral forearm rotation positions and total forearm rotation was measured with 0.3 Nm of torque. Statistical significant differences between the conditions were detected using a two-way ANOVA with Tukey's post-hoc test. The radial head dislocated in all specimens in LUCL and RCL tear and Comp but not in LUCL tear. Total forearm ROM did not increase form intact to LUCL tear (p>0.05) but significantly increased in LUCL and RCL tear (p=0.0002) and complete tear (p<0.0001) in all flexion angles. Additionally, ROM in LUCL tear significantly differed from LUCL and RCL tear and complete tear (p=0.0027 and p=0.0002). A similar trend was seen with the varus angle. While there was a significant difference when the intact condition was compared to both the LUCLand RCL tear and complete tear conditions (p<0.0001 and p<0.0001), there was no difference between the intact and LUCL tear conditions. LUCL tear alone is not sufficient to cause instability and increase ROM and varus angle, meanwhile the increase of ROM and varus angle with additional capsular tear was not significant compared to LUCL and RCL tear. The increase of ROM after LUCL and RCL tear is an unknown symptom of PLRI


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 40 - 40
1 Jan 2017
Korntner S Lehner C Kunkel N Traweger A Tempfer H
Full Access

Metabolic disorders are frequently associated with tendon degeneration and impaired healing after acute injury. However, the underlying cellular and molecular mechanisms remain largely unclear. We have previously shown that human and rat tendon cells responde to glucose stimulation in vitro by secretion of insulin. Therefore, we now hypothesize that nutritional glucose uptake affects tendon healing in a rat model. In female rats (n=30/group), unilateral full-thickness Achilles tendon defects were created. Immediately after surgery animals were either fed a glucose rich- or a control diet for up to 4 weeks. Gait analysis (Catwalk, Noldus) was performed at three time points. In addition, tendon thickness measurements, biomechanical testing and immunohistochemical analysis were conducted. Subsequently, gene expression analysis, comparing cDNA pools (n=5) prepared from repair tissues of both groups was performed. The repair tissues of the high glucose group were significantly thicker compared to the control group (p<0.001). The intermediate toe spread, an indicator of pain, were significantly improved in the high glucose group one and two weeks post surgery. Biomechanical analysis revealed that the repair tissues of the high glucose group were significantly stiffer (p<0.05) compared to the control group, no significant difference was detected for maximum tensile load…. The proportion of Ki67+ cells in the repair tissue was 3.3% in the control diet group and 9,8% in the high glucose group, indicating increased cell proliferation (p<0.001). Finally, gene expression analysis revealed the chondrogenic marker genes Collagen II, Aggrecan, COMP and SOX9 to be upregulated and genes involved in lipid metabolism like PPARgamma and Fabp2 to be downregulated in the glucose diet group. Here we show fort he first time that a high-glucose diet affects gait pattern and tendon biomechanics, influences tendon thickness and cell proliferation. Gene expression analysis reveals a regulation of chondrogenic as well as adipogenic marker genes. The molecular mechanisms underlying these effects on cells and extracellular matrix are currently under investigation, potentially revealing targets for developing a dietary intervention scheme to support tendon regeneration after trauma or tendon disease


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 32 - 32
1 Oct 2015
Chauhan A Morrissey D Jones P Angioi M Kumar B Langberg H Maffulli N Malliaras P
Full Access

Introduction. Achilles tendinopathy (AT) is a highly prevalent injury in athletes and non-athletes with an unknown aetiology. Genetic risk factors have been a recent focus of investigation. The aim of this systematic review was to determine which loci have been linked with mid-portion AT and could potentially be used as biomarkers in tendinopathy risk models or as preventative or therapeutic targets. Materials and Methods. Eight electronic bibliographic databases were searched from inception to April 2015 for cross-sectional, prospective cohort and case-control studies that included empirical research investigating genes associated with mid-portion AT. Potential publications were assessed by two independent reviewers (AAC and PRJ) for inclusion and quality. Quality was evaluated using a validated scale. Results. Twelve candidate gene studies and three pathway-based genetic association studies that investigated genetic risk factors for AT were identified. According to Ariëns's criteria, there was strong evidence for the COL5A1 gene. There was some evidence for 6 of the other genes investigated: COL5A3, TNC, CASP8, MIR608, GDF5, MMP3 and TIMP2 genes. There was inconclusive evidence for the following genes: COL3A1, COL5A2, COL11A1, COL11A2, COL12A1, COL1A1, COL27A1, COL14A1, COMP, THBS2, ADAMTS2, ADAMTS5, ADAMTS14, ADAM12, TGFβ1, IL-1β, IL-1RN, IL-6, NOS2 and NOS3. There was some evidence for combinations of functional variants of different genes and pseudohaplotypes constructed from many functional variants. The quality of included studies varied (3/9 to 7/9), and the average quality assessment score was 5.5/9 (61%). Discussion. There are genetic differences between subjects with and without AT. To further elucidate these findings, prospective studies are needed to investigate the increased risk associated with specific genetic findings. Modifying training loads or preventative exercise may be used to mitigate increased risk, although it needs to be highlighted that a genetic association does not necessarily mean an individual will develop Achilles tendinopathy. Gene therapy may have a role in tendon healing, but further research is necessary to develop risk models and establish the most advantageous genes to transfer


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 64 - 64
1 Jul 2014
Lopa S Colombini A Stanco D de Girolamo L Sansone V Moretti M
Full Access

Summary. The donor-matched comparison between mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue revealed their preferential commitment towards the chondrogenic and osteogenic lineage, respectively. These peculiarities could be relevant for the development of successful bone and cartilage cell-based applications. Introduction. Mesenchymal stem cells (MSCs) have been proposed in bone and cartilage tissue engineering applications as an alternative to terminally differentiated cells. In the present study we characterised and performed a donor-matched comparison between MSCs resident within the infrapatellar fat pad (IFP-MSCs) and the knee subcutaneous adipose tissue (ASCs) of osteoarthritic patients. These two fat depots, indeed, can be considered appealing candidates for orthopaedic cell-based therapies since they are highly accessible during knee surgery. Materials and Methods. IFP-MSCs and ASCs were obtained from 25 osteoarthritic patients undergoing total knee replacement. Undifferentiated cells were compared for their clonogenic ability and surface markers expression. Adipogenic, osteogenic and chondrogenic differentiative potentials were evaluated after IFP-MSCs and ASCs induction towards the various lineages by means of histological, biochemical and gene expression analysis of characteristic markers. Results. We found that undifferentiated IFP-MSCs and ASCs displayed a high clonogenic ability and the typical immunophenotype of MSCs (CD13. +. /CD29. +. /CD44. +. /CD73. +. /CD90. +. /CD105. +. /CD166. +. /CD31. −. /CD45. −. ), without any difference in terms of surface markers expression between these two cell populations. When both cell types were cultured in adequate adipo-, osteo- and chondro- differentiative media, IFP-MSCs and ASCs showed similar adipogenic potential, though undifferentiated ASCs had superior LEP expression compared to undifferentiated IFP-MSCs (p<0.01). ASCs showed a higher response to osteogenic induction in comparison with IFP-MSCs as demonstrated by significantly higher levels of calcified matrix deposition (p<0.05) and alkaline phosphatase activity (p<0.05). After 14 days of chondrogenic induction of cells cultured in pellets, we observed greater amounts of glycosaminoglycans (p<0.01) in IFP-MSCs pellets compared to ASCs pellets. Chondrogenic differentiation of IFP-MSCs showed also a superior gene expression of ACAN (p<0.001), SOX9, COMP (p<0.001) and COL2A1 (p<0.05) compared to ASCs. Furthermore, IFP-MSCs showed significantly lower levels of COL10A1 (p<0.05) and COL1A1 (p<0.01) and lower alkaline phosphatase release (p<0.05) compared to ASCs, supporting the hypothesis of a superior chondrogenic commitment of IFP-MSCs. Discussion/Conclusion. The observed dissimilarities between IFP-MSCs and ASCs suggest that despite similar features at the undifferentiated state, MSCs deriving from different anatomical sites within the same joint can display a specific commitment. The peculiar commitment of IFP-MSCs and ASCs towards the chondrogenic and osteogenic lineage suggests that they may be preferentially used for cartilage and bone applications, respectively