Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 2, Issue 2 | Pages 26 - 32
1 Feb 2013
Neumann H Schulz AP Gille J Klinger M Jürgens C Reimers N Kienast B

Objectives

Osteochondral injuries, if not treated adequately, often lead to severe osteoarthritis. Possible treatment options include refixation of the fragment or replacement therapies such as Pridie drilling, microfracture or osteochondral grafts, all of which have certain disadvantages. Only refixation of the fragment can produce a smooth and resilient joint surface. The aim of this study was the evaluation of an ultrasound-activated bioresorbable pin for the refixation of osteochondral fragments under physiological conditions.

Methods

In 16 Merino sheep, specific osteochondral fragments of the medial femoral condyle were produced and refixed with one of conventional bioresorbable pins, titanium screws or ultrasound-activated pins. Macro- and microscopic scoring was undertaken after three months.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 287 - 288
1 May 2009
Horan RL Weitzel PP Richmond JC Mortarino E Horan DJ Toponarski I Altman GH
Full Access

Objective: The high incidence of retear following primary rotator cuff tendon (RCT) repair necessitates new strategies for tendon footprint augmentation. This study’s objective was to evaluate the SeriCuff™, a non-mammalian derived silk-based long-term bioresorbable implant, for RCT footprint reinforcement. The study aimed to characterize the device when overlaid on the infraspinatus tendon footprint of sheep in a RCT repair model. The technique was not targeted for the repair of massive RCT defects but advocated as a preventive measure to cuff reruptures in mid-to-large cuff tears, avoiding the need for surgical revision. Methods: Bilateral surgeries were performed on each of 10 sheep during a single surgical session. The right shoulder of each animal was implanted with SeriCuff and the left shoulder was used as an operated control. The superficial layer of the infraspinatus tendon was removed and feathered for a distance of 1 cm. The remaining footprint was bluntly dissected from the humeral head with the exception of a thin band of the superior portion of the infraspinatus tendon. The footprint was approximated, 3 suture anchors placed equi-distantly along the edge of the full thickness region of the tendon and the tendon sutured to the anchors with a modified Mason-Allen stitch. Two additional anchors were placed along the lateral edge of the tendon in the right shoulder. The SeriCuff device was positioned over the 5 anchors and sutured in place using a single suture at each location (Fig 1B). In the left shoulder, no device was implanted and a second row of anchors was not used. Animals were allowed to ambulate immediately post-op with unrestrained motion for the duration of the study. All animals were necropsied at 3 mos and evaluated histologically (N=4) and mechanically (N=6). Samples designated for mechanical analysis were dissected leaving only the infraspinatus tendon and muscle attached to the humorous. The tendon was pulled to failure at a rate of 500 mm/min with the sample positioned such that the longitudinal axis of the tendon was collinear with the applied load. Results: The animals were able to ambulate following surgery with return to normal gait at an average of 6 days post-operatively. Pain scores diminished with time throughout the first two weeks. Mechanical analysis indicated an average 42% increase in repair strength of the SeriCuff reinforced repair as compared to the contralateral control at 3 months. The SeriCuff device supported the formation of Sharpy’s fibers in the remodeling tendon tissue. Conclusions: The addition of SeriCuff helped to reestablish the tendon footprint resulting in significantly increased repair strength 3 most post-op and therefore may have applications in reducing the high incidence of primary repair failure


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 236 - 236
1 Nov 2002
Field J Hearn T Costi J McGee M Costi K Adachi N Ochi M
Full Access

Introduction: Accelerated rehabilitation programs following ACL reconstruction require adequate fixation strength. Staple fixation of grafts outside the tibial tunnel has been shown to have fixation strength comparable to interference screws. The use of bioresorbable polymer implants has potentially significant advantages especially if revision is required. The purpose of this study was to evaluate a new bioresorbable fixation staple using an ovine model. Materials and Methods: Forty-eight mature sheep underwent unilateral cranial cruciate ligament (CrCl) reconstruction. The reconstruction comprised a loop of superficial digital flexor tendon (autograft) joined to a prosthetic ligament (LK-15). Femoral fixation was by endobutton. Tibial fixation of the LK-15 was with either a new Poly-L-lactic acid (PLLA) staple (Zimmer Japan/Gunze Ltd.) or a Cobalt-chrome (CoCr) staple. Biomechanical and histological responses were evaluated at 0, 6, 12 and 24 weeks. Results: At all times post-reconstruction there were no significant differences between staple types for construct strength or stiffness (p> 0.05). The staple was not the site of reconstruction failure, and there were no adverse tissue reactions, for either staple type. Fibrous tissue was more often found at the interface of the CoCr staple. Conclusions: The PLLA staple performed biomechanically as well as the metal staple for tibial fixation of cruciate ligament reconstructions. There were no significant observable adverse histological responses over the time intervals examined