The purpose of this study was to evaluate A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted
subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm
PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight
and 12 weeks post-implantation were compared with control (Sham)
and PLAGA (five rats per group/point in time). Rats were observed
for signs of morbidity, overt toxicity, weight gain and food consumption,
while haematology, urinalysis and histopathology were completed
when the animals were killed.Objectives
Methods
Biodegradable metals as orthopaedic implant materials receive substantial scientific and clinical interest. Marketed cardiovascular products confirm good biocompatibility of iron. Solid iron biodegrades slowly in vivo and has got supra-physiological mechanical properties as compared to bone and porous implants can be optimized for specific orthopaedic applications. We used Direct Metal Printing (DMP)3 to additively manufacture (AM) scaffolds of pure iron with fine-tuned bone-mimetic mechanical properties and improved degradation behavior to characterize their biocompatibility under static and dynamic 3D culture conditions using a spectrum of different cell types. Atomized iron powder was used to manufacture scaffolds with a repetitive diamond unit cell design on a ProX DMP 320 (Layerwise/3D Systems, Belgium). Mechanical characterization (Instron machine with a 10kN load cell, ISO 13314: 2011), degradation behavior under static and dynamic conditions (37ºC, 5% CO2 and 20% O2) for up of 28 days, with μCT as well as SEM/energy-dispersive X-ray spectroscopy (EDS) (SEM, JSM-IT100, JEOL) monitoring under in vivo-like conditions.
Introduction. Currently, different techniques to evaluate biocompatibility of orthopaedic materials, including two-dimensional (2D) cell culture for metal and ceramic wear debris and floating 2D surfaces or three-dimensional (3D) agarose gels for UHMWPE wear debris, are used. We have developed a single method using 3D agarose gels that is suitable to test the biocompatibility of all three types of wear debris simultaneously. Moreover, stimulation of the cells by wear particles embedded in a 3D gel better mimics the in vivo environment. Materials and Methods. Clinically relevant sterile UHMWPE and CoCr wear particles were generated using methodologies described previously [1,2]. Commercially available nanoscale and micron-sized silicon nitride (Si. 3. N. 4. ) particles (<50 nm and <1 μm, Sigma UK) were sterilised by heat treatment for 4h at 180°C. Agarose-particle suspensions were prepared by mixing warm 2% (w/v) low-melting-point agarose solution with the particles dispersed by sonication in DMEM culture media. The suspensions were then allowed to set at room temperature for 10 min in 96 well culture plates. Sub-confluent L929 murine fibroblasts were cultured on the prepared gels for up to 6 days in 5% (v/v) CO. 2. at 37°C. After incubation, the viability of cells was measured using the ATP-lite assay. The results were expressed as mean ± 95% confidence limits and the data was analysed using one-way ANOVA and Tukey-Kramer post-hoc analysis. Results and Discussion. The gels were observed to ensure uniform distribution of particles and migration of cells into the gel. No significant reduction in viability was observed for nanoscale and micron-sized Si. 3. N. 4. particles at low doses (0.5 μm. 3. per cell) and high doses (50 μm. 3. per cell), or for UHMWPE wear debris at high doses (100 μm. 3. per cell) [Figure1]. Moreover, the viability was significantly reduced for high doses of CoCr wear debris (50 μm. 3. per cell) and the positive control, camptothecin (2 μg.ml. −1. ) at day 6 [Figure1]. These results are consistent with the literature [2,3] and therefore validate our 3D agarose cell culture method for comparing cytotoxicity of polymer, metal and ceramic particles in a single assay, simultaneously. Conclusion.
Stryde® lengthening nail has been recently withdrawn because of concerns about osteolysis and other bone lesions that have been observed early after implantation. The present study analyses the incidence and features of these bone lesions in our patients. This is a retrospective review of a series of patients from two centres specializing in limb reconstruction. Inclusion criteria was a history of surgery with Stryde® lengthening nail with more than one year follow-up available. All postoperative x-rays were and clinical notes were reviewed.Introduction
Materials and Methods
The utilization of silver as an anti-infective agent is a subject of debate within the scientific community, with recurring discussions surrounding its biocompatibility. Presently, galvanic silver coating finds widespread clinical application in mitigating infection risks associated with large joint arthroplasties. While some instances have linked this coating to sporadic cases of localized argyria, these occurrences have not exhibited systematic or functional limitations. To address concerns regarding biocompatibility, a novel approach has been devised for anti-infective implant coatings: encapsulating silver nitrate within a biopolymer reservoir for non-articulating surfaces. This poly-L-lactic acid layer releases silver ions gradually, thereby circumventing biocompatibility concerns. Female C57BL/6 mice were utilized as an experimental model, with 6x2 mm Ti6Al4V discs, coated with or without the biopolymer-protected silver coating, implanted subcutaneously on both sides of the vertebrae. Daily blood samples were collected, and serum was analyzed for C-reactive protein (CRP) and silver concentration. After three days, histopathological analyses were conducted on the surrounding soft tissue pouch.Aim
Method
We have previously demonstrated that peroxide crosslinked vitamin E-blended UHMWPE maintains its clinically-required wear and mechanical properties [1]. This material can potentially be used as an irradiation-free bearing surface for TJA. However, using organic peroxides in medical devices requires a thorough examination of tissues in contact with the implant. For this study we crosslinked polyethylene using five times the needed concentration of peroxide (2,5-Dimethyl-2,5-di(t-butylperoxy)-hexyne-3 or P130), followed by implantation to determine implant biocompatibility, and pre and post implant peroxide residual contents. The study was performed after institutional approval following ISO standard 10993–6. Study groups: not crosslinked (0.2 (1050) VE), crosslinked (0.2 VE (1050)/5% P130) and crosslinked-high temperature melted (HTM) (0.2 VE (1050)/5% P130). Materials were blended and consolidated, machined (2.5 diameter × 2.5 cm height), sterilized and implanted in the dorsum New Zealand white rabbits. Pre and post implantation FTIR was performed. Two samples were implanted in each rabbit; Introduction
Methods
Silver is known for its excellent antimicrobial activity, including activity against multiresistant strains. The aim of the current study was to analyze the biocompatibility and potential influence on the fracture healing process a silver-coating technology for locking plates compared to silver-free locking plates in a rabbit model. The implants used in this study were 7-hole titanium locking plates, and plasma electrolytic oxidation (PEO) silver coated equivalents. A total of 24 rabbits were used in this study (12 coated, 12 non-coated). An osteotomy of the midshaft of the humerus was created with an oscillating saw and the humerus stabilized with the 7 hole locking plates with a total of 6 screws. X-rays were taken on day 0, week 2, 4, 6, 8, and 10 for continuous radiographical evaluation of the fracture healing. All animals were euthanized after 10 weeks and further assessment was performed using X-rays, micro-CT, non-destructive four-point bending biomechanical testing and histology. Furthermore, silver concentration was measured in the kidney, liver, spleen and brain.Aim
Methods
Silicon nitride (SiN) is a recently introduced bearing material for THR that has shown potential in its bulk form and as a coating material on cobalt-chromium (CoCr) substrates. Previous studies have shown that SiN has low friction characteristics, low wear rates and high mechanical strength. Moreover, it has been shown to have osseointegration properties. However, there is limited evidence to support its biocompatibility as an implant material. The aim of this study was to investigate the responses of peripheral blood mononuclear cells (PBMNCs) isolated from healthy human volunteers and U937 human histiocytes (U937s) to SiN nanoparticles and CoCr wear particles. SiN nanopowder (<50nm, Sigma UK) and CoCr wear particles (nanoscale, generated in a multidirectional pin-on-plate reciprocator) were heat-treated for 4 h at 180°C and dispersed by sonication for 10 min prior to their use in cell culture experiments. Whole peripheral blood was collected from healthy donors (ethics approval BIOSCI 10–108, University of Leeds). The PBMNCs were isolated using Lymphoprep® as a density gradient medium and incubated for 24 h in 5% (v/v) CO2at 37°C to allow attachment of mononuclear phagocytes. SiN and CoCr particles were then added to the phagocytes at a volume concentration of 50 µm3 particles per cell and cultured for 24 h in RPMI-1640 culture medium in 5% (v/v) CO2 at 37°C. Cells alone were used as a negative control and lipopolysaccharide (LPS; 200ng/ml) was used as a positive control. Cell viability was measured after 24 h by ATPLite assay and tumour necrosis factor alpha (TNF-α) release was measured by sandwich ELISA. U937s were co-cultured with SiN and CoCr particles at doses of 0.05, 0.5, 5 and 50 µm3 particles per cell for 24h in 5% (v/v) CO2 at 37 C. Cells alone were used as a negative control and camptothecin (2 µg/ml) was used as a positive control. Cell viability was measured after 0, 1, 3, 6 and 9 days. Results from cell viability assays and TNF-α response were expressed as mean ±95% confidence limits and the data was analysed using one-way ANOVA and Tukey-Kramer post-hoc analysis.Introduction
Methods
3-D Printing with direct metal tooling (DMT) technology was innovatively introduced in the field of surface treatment of prosthesis to improve, moreover to overcome the problems of plasma spray, hopefully resulting in opening the possibility of another page of coating technology. We presumed such modification on the surface of Co-Cr alloy by DMT would improve the ability of Co-Cr alloys to osseointegrate. We compared the in vitro and in vivo ability of cells to adhere to DMT coated Co-Cr alloy to that of two different types of surface modifications: machined and plasma spray(TPS). We performed energy-dispersive x-ray spectroscopy and scanned electron microscopy investigations to assess the structure and morphology of the surfaces. Biologic and morphologic responses to osteoblast cell lines of human were then examined by measuring cell proliferation, cell differentiation (alkaline phosphatase activity), and avb3 integrin. The cell proliferation rate, alkaline phosphatase activity, and cell adhesion in the MAO group increased in comparison to those in the machined and grit-blasted groups.Introduction
Method
Structural bone allografts are a viable option in reconstructing massive bone defects in patients following musculoskeletal (MSK) tumour resection and revision hip/knee replacements. To decrease infection risk, bone allografts are often sterilised with gamma-irradiation, which consequently degrades the bone collagen connectivity and makes the bone brittle. Clinically, irradiated bone allografts fracture at rates twice that of fresh non-irradiated allografts. Our lab has developed a method that protects the bone collagen connectivity through ribose pre-treatment while still undergoing gamma-irradiation. Biomechanical testing of bone pretreated with our method provided 60–70% protection of toughness and 100% protection of strength otherwise lost with conventional irradiation. This study aimed to determine if the ribose-treated bone allografts are biocompatible with host bone. The New Zealand White rabbit (NZWr) radius segmental defect model was used, in which 15-mm critically-sized defects were created. Bone allografts were first harvested from the radial diaphysis of donor female NZWr, and treated to create 3 graft types: C=untreated controls, I=conventionally-irradiated (33 kGy), R=our ribose pretreated + irradiation method. Recipient female NZWr (n=24) were then evenly randomised into the 3 graft groups. Allografts were surgically fixed with a 0.8-mm Kirschner wire. Post-operative X-rays were taken at 2, 6, and 12 weeks, with bony healing assessed by a blinded MSK radiologist using an established radiographic scoring system. The reconstructed radii were retrieved at 12 weeks and analysed using bone histomorphometry and microCT. Kruskal-Wallis and Mann-Whitney tests were utilised to compare groups, with statistical significance when p<0.05. Radiographic analysis revealed no differences in periosteal reaction and degree of osteotomy site union between the groups at any time point. Less cortical remodeling was observed in R and I grafts compared to untreated controls at 6 weeks (p=0.004), but was no longer evident by 12 weeks. Radiographic union was achieved in all groups by 12 weeks. Histologic and microCT analysis further confirmed union at the graft-host bone interface, with the presence of mineralising callus and osteoid. Histomorphometry also showed the bridging external callus originated from host bone periosteum and a distinct cement line between allograft and host bone was present at the union site. Previous studies have shown that the presence of non-enzymatic glycation end products in bone can impair fracture healing. However, these studies investigated bony healing in the setting of diabetic states. Our findings showed that under normal conditions, ribose pretreated grafts healed at rates similar to controls via mechanisms also seen in retrieved human allografts clinically in use. These findings that grafts pretreated with our method are biocompatible with host bone in the rabbit help to further advance this technology for clinical trials.
Since its introduction in total hip replacements in the 1960's, Ultra High Molecular Weight Polyethylene (UHMWPE) has played a major role as a bearing component material for joint arthroplasty. Concerns were raised when issues of wear resistance became apparent, and therefore Highly Crosslinked Polyethylenes were introduced. Such materials undergo a thermal treatment to quench the free radicals and reduce progressive oxidation. However, said thermal treatment weakens the material mechanical properties and hence the use of antioxidants has been proposed and implemented in clinical use, mainly Vitamin-E. This can be added to the material before or after irradiation. If it is done before, part of the anti-oxydant is consumed during irradiation and so will not be available for its main purpose, and part reacts before irradiation with the free radicals thus reducing the crosslinking effect. If it is added after irradiation, high temperatures are required in order to diffuse it in the bulk material, and anyway the surface will be mainly rich in antioxidant. However, Vitamin-E tends to neutralize the free radicals on the oxidized lipid chain present in our body fluids and so in direct contact with the prosthetic components: such mechanism reduces the Vitamin-E quantity available for anti-oxidation purposes in the long run. A UHMWPE doped with Hindered Amine Light Stabilizer (HALS) has been developed and tested for applications in large joint replacements where highest resistance to wear and tough mechanical properties are simultaneously required, such as tibial inserts for knee joints or acetabular inserts for large diameter heads. Mechanical and biocompatibility tests were run in accordance with ASTM F 2565-06 and ISO 10993-1 with successful results and good reproducibility. In particular, electro spin resonance exhibited a very high level of free radicals in the three samples, which confirms the properties of this new material. Free radicals are the result of the activation of the HALS molecules during irradiation, creating nitroxide radicals that will destroy the residual alkyl radicals responsible for the oxidation before and after implantation.
Millions of medical devices made of synthetic or modified natural materials all trigger a similar reaction—the foreign body reaction.
Introduction. Sir John Charnley introduced his concept of low friction arthroplasty— though this did not necessarily mean low wear, as the initial experience with metal on teflon proved. Although other bearing surfaces had been tried in the past, the success of the Charnley THR meant that metal-on-polyethylene became the standard bearing couple for many years. However, concerns regarding the occurrence of peri-prosthetic lysis secondary to wear particles lead to consideration of other bearing surfaces and even to the avoidance of cement (although this has proven to be erroneous). Bearing combinations include polymers, ceramic and metallic materials and are generally categorised as hard/soft or hard/hard. In general, all newer bearing surface combinations have reduced wear but present with their own strengths and weaknesses, some of which are becoming more apparent with time. Bearing surfaces must have the following characteristics: low wear rate, low friction,