Advertisement for orthosearch.org.uk
Results 1 - 20 of 259
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 51 - 51
1 May 2016
Moon K Yang J Yang S
Full Access

Purpose. The results of ceramic-on-ceramic (CoC) bearing surfaces in primary total hip arthroplasty (THA) were well known. However, it was not known in revision THA. The purpose of this study is to report the results of revision THA with ceramic articulation. Materials and Methods. 112 revision THAs with ceramic articulation were evaluated. The mean age at the time of surgery was 58.3 years (28 to 97). The mean duration of the follow-up periods was 6.4 years (2 to 11.8 years). Results. The Harris hip scores improved from an average of 79.0 at the index surgery to an average of 91.1 at the last follow-up. (P<0.001) None of hips showed osteolysis or ceramic head fracture. One hip shows aseptic loosening in the acetabular components with squeaking that caused a re-revision. There were nine cases of dislocation. The overall survival rate of the implants was 85.1% (95% confidence interval, 61.7% to 94.0%) at ten years with revision for any reason as the end point. Conclusion. The ceramic articulation is one of good bearing options for revision THA in patients with a long life expectancy


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 68 - 68
1 Feb 2020
Gascoyne T Pejhan S Bohm E Wyss U
Full Access

Background. The anatomy of the human knee is very different than the tibiofemoral surface geometry of most modern total knee replacements (TKRs). Many TKRs are designed with simplified articulating surfaces that are mediolaterally symmetrical, resulting in non-natural patterns of motion of the knee joint [1]. Recent orthopaedic trends portray a shift away from basic tibiofemoral geometry towards designs which better replicate natural knee kinematics by adding constraint to the medial condyle and decreasing constraint on the lateral condyle [2]. A recent design concept has paired this theory with the concept of guided kinematic motion throughout the flexion range [3]. The purpose of this study was to validate the kinematic pattern of motion of the surface-guided knee concept through in vitro, mechanical testing. Methods. Prototypes of the surface-guided knee implant were manufactured using cobalt chromium alloy (femoral component) and ultra-high molecular weight polyethylene (tibial component). The prototypes were installed in a force-controlled knee wear simulator (AMTI, Watertown, MA) to assess kinematic behavior of the tibiofemoral articulation (Figure 1). Axial joint load and knee flexion experienced during lunging and squatting exercises were extracted from literature and used as the primary inputs for the test. Anteroposterior and internal-external rotation of the implant components were left unconstrained so as to be passively driven by the tibiofemoral surface geometry. One hundred cycles of each exercise were performed on the simulator at 0.33 Hz using diluted bovine calf serum as the articular surface lubricant. Component motion and reaction force outputs were collected from the knee simulator and compared against the kinematic targets of the design in order to validate the surface-guided knee concept. Results. Under deep flexion conditions of up to 140° of squatting the surface-guided knee implants were found to undergo a maximum of 22.2° of tibial internal rotation and 20.4 mm of posterior rollback on the lateral condyle. Pivoting of the knee joint was centered about the highly congruent medial condyle which experienced only 1.6 mm of posterior rollback. Experimental results were within 2° (internal-external rotation) and 1 mm (anteroposterior translation) agreement with the design target throughout the applied exercises (Figure 2). Conclusion. The results of this test confirm that by combining a constrained medial condyle with guiding geometry on the lateral condyle, deep knee flexion activities of up to 140° can be performed while maintaining near-natural kinematics of the knee joint. The authors believe that the tested surface-guided implant concept is a significant step toward the development of novel TKR which allows a greater range of motion and could improve the quality of life for active patients undergoing knee replacement. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 48 - 48
1 Jan 2016
Todo M Afzan M Anuar M Nagamine R Hirokawa S
Full Access

Introduction. Mobility at insert-tray articulations in mobile bearing knee implant accommodates lower cross-shear at polyethylene (PE) insert, which in turn reduces wear and delamination as well as decreasing constraint forces at implant-bone interfaces. Though, clinical studies disclosed damage due to wear has occurred at these mobile bearing articulations. The primary goal of this study is to investigate the effect of second articulations bearing mobility and surface friction at insert-tray interfaces to stress states at tibial post during deep flexion motion. Method & Analysis. Figure 1 shows the 3-D computational aided drawing model and finite element model of implant used in this study. LS-DYNA software was employed to develop the dynamic model. Four conditions of models were tested including fixed bearing, as well as models with coefficients of friction of 0.04, 0.10 and 0.15 at tibial-tray interfaces to represent healthy and with debris appearance. A pair of nonlinear springs was positioned both anteriorly and posteriorly to represent ligamentous constraint. The dynamic model was developed to perform position driven motion from 0° to 135° of flexion angle with 0°, 10° and 15° of tibial rotation. The prosthesis components were subjected with a deep squatting force. Results. Peak values of maximum shear stress for different coefficients of friction and fixed bearing, respectively, are shown in Figure 2. Peak value of maximum shear stress at tibial post of fixed bearing is significantly larger than mobile bearing with tibial rotation. The peak values are 63MPa and 46.7MPa with 10° and 15° tibial rotation respectively for fixed bearing while for mobile bearing the values range from 32MPa to 36.6MPa and from 35.3MPa to 40.6MPa with 10° and 15° tibial rotation respectively. It was found that peak value of maximum shear stress increases with coefficient of friction and tibial rotation. In contrast, with normal rotation, bearing mobility and surface friction do not give any significant effect on the shear stress at tibial post. Discussion & Conclusions. Appearance of second articulations in mobile bearing TKA provides an attribute in reducing force transmission via implant-bone interface which leads to lower shear stress induced in tibial post due to transmitted moment. However, higher surface friction will result in larger frictional force, which in turn induce larger moment at tibial post. Higher conformity will attribute to higher cross-shear level during knee motion. As a result, wear damage at tibiofemoral articular surface of mobile insert become worse


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 50 - 50
1 May 2016
Moon K Ryu D Seo B
Full Access

A ceramic is currently considered as the most ideal articulation in primary THA. The authors evaluated clinicoradiographic results and complications of cementless THA with 3rd generation of ceramic bearing. From April 2001 to January 2008, 310 primary THAs were performed in 300 patients using 3rd generation of ceramic bearing. In results, Harris hip score at last follow up was improved to an average of 95.4 points from 51.6 points preoperatively. In all cases, fixations around implants were stable and there was no osteolysis. Complications were dislocations, squeaking, ceramic femoral head and liner fracture. Our outcomes using cementless THA with 3rd generation of ceramic articulation were satisfactory, but more clinical study and investigation will be necessary to reduce complications


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 101 - 101
1 Mar 2017
Wimmer M Pacione C Yuh C Laurent M Chubinskaya S
Full Access

Introduction. There is interest in minimally invasive solutions that reduce osteoarthritic symptoms and restore joint mobility in the early stages of cartilage degeneration or damage. The aim of the present study was to evaluate the Biolox®delta alumina-zirconia composite as a counterface for articulation against live cartilage in comparison to the clinically relevant CoCrMo alloy using a highly controlled in vitro ball-on-flat articulation bioreactor that has been shown to rank materials in accord with clinical experience. Methods. The four-station bioreactor was housed in an incubator. The dual axis concept of this simulator approximates the rolling-gliding kinematics of the joint. Twelve 32 mm alumina-zirconia composite femoral heads (Biolox®delta, CeramTec GmbH, Germany) and twelve 32 mm CoCrMo femoral heads (Peter Brehm GmbH, Germany) made up the testing groups. Each head articulated against a cartilage disk of 14 mm diam., harvested from six months old steers. Free-swelling control disks were obtained as well. Testing was conducted in Mini ITS medium for three hours daily over 10 days applying a load of 40 N (∼2 MPa). PG/GAG was determined using the dimethylmethylene blue (DMMB) assay. Hydroxyproline was analyzed by high performance liquid chromatography coupled to a mass spectrometer. Additionally, at test conclusion, chondrocyte survival was determined using Live/Dead assay. Histological analysis was performed using a modified Mankin score. The effect of articulating material (ceramic, CoCrMo) on the various outputs of interest was evaluated using ANOVA. Blocking was performed with respect to the animals. The Mankin scores were compared using the Kruskal–Wallis test. Results. Cells stayed alive during the course of the 3-week experiment with cell survival values close to or at 80% at test completion. There was no difference between ceramic and free swelling control tissue. However, cell count values were inferior for CoCrMo in the superficial zone (p= 0.003). Tested tissue suffered mostly structural abnormalities. In many samples, the superficial layer was disturbed (and sometimes absent), but deeper layers were little affected. The average Mankin scores were in the range of 2 (out of 14) for both materials (p=0.772; Fig. 1). PG/GAG content in medium was highest for CoCrMo (Fig. 2). Though despite a 10% difference between CoCrMo and ceramic, this did not manifest in statistical significance (p=0.315). Similarly, hydroxyproline release into medium was higher for CoCrMo than ceramic (Fig. 3). This difference (28%) was statistically significant (p=0.024). Discussion. Overall, the results indicate that ceramic-on-cartilage induces less tissue and cell damage than metal-on-cartilage. However, only the hydroxyproline measurements reached statistical significance, partially due to a large variation within both material groups. Current understanding of cartilage wear is still incomplete. While studies have utilized the coefficient of friction against artificial materials as a surrogate wear marker, the best way to determine wear in in-vitro experiments is not well-established. Here, we used the matrix components proteoglycan and hydroxyproline to predict cartilage damage, but further work is necessary to elucidate the mechanobiological reasons for damage. In summary, from this study, Biolox®delta ceramic is generally superior to CoCrMo in the articulation against hyaline cartilage. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 233 - 233
1 Jun 2012
Rim YT Hoon PY Young CN
Full Access

Purpose. This study was undertaken to assess the result of total hip arthroplasty (THA) performed for fused hips. Patients and Methods. Twenty nine patients (31 hips), aged 21 to 70 years (average 46 years), underwent THA conversion surgery and were followed for an average of 4.6 years (2.4-12.0 years). There were 23 cases of spontaneous fusion and 8 case of surgical fusion. The causes of joint fusion were tuberculosis in 6 hips, childhood coxitis in 13, ankylosing spondylitis in 6 and childhood trauma in 4. Modified two incision technique was used in 9 hips and in 22 hips, the surgery was performed through a posterolateral approach combined with anterior capsulotomy through gluteus medius and tensor fasica lata interval. In 1 case, greater trochanter osteotomy was done. All acetabular components were inserted at the true acetabulum and the articulations were metal on metal in 7 cases and ceramic on ceramic in 24 cases. Postoperatively, range of motion exercises were encouraged after 2 to 3 weeks of bed rest and subsequent weight bearing crutch ambulation. Then active exercises were strongly encouraged to stretch abductors. We evaluated the clinical and radiological results. Results. Mean duration of surgery was 178.6 minutes, and mean perioperative blood loss was 1420.1 ml. Post-operative dislocation occurred in 1 case and partial femoral nerve palsy developed in 1 case. Mean Harris Hip Score improved from 42.4 to 84.2 and mean leg lengthening of 36.6 mm was achieved. Sitting cross legged was possible in 15 patients and except 2 patients, all patients were satisfied with the surgery. On the radiologic evaluation, there was no changes in cup position and there was one case with acetabular focal osteolysis. Postoperative dislocation occurred in one case and there was no revision surgery or infection. Conclusion. Our study suggest that THA performed for fused hips with hard bearing articulation can provide good clinical and radiological results in mid-term follow up


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 133 - 133
1 Sep 2012
Yoon TR Park KS Jung W Park G Park YH
Full Access

Purpose. Hip arthroplasty is a good treatment option for displaced femoral neck fracture in elderly patients. However, neuromuscular disease such as cerebral infarction or hemorrhage can be a concerning problem for THA since dislocation after operation can frequently occur. The purpose of this prospective study was to evaluate the functional results of modified minimally invasive (MI) two-incision total hip arthroplasty (THA) with the use of large-diameter (>38mm) metal-on-metal articulation in patients with muscle weakness. Patients and Methods. 19 consecutive patients (19 hips) with displaced femoral neck fracture with muscle weakness were enrolled. There were 11 patients with cerebral infarction, 4 patients with cerebral hemorrhage and 4 patients with Parkinson's disease. In the lateral position, an anterolateral approach between the gluteus medius and tensor fascia lata and a posterior approach between the piriformis and gluteus medius were used. Surgical morbidity, functional recovery, radiological implantation properties, range of motion (ROM) and complications were assessed. Results. The mean operation time was 73.5 minutes and the average perioperative blood loss was 725.9cc. The mean head diameter used was 44 mm (38–50). The mean lateral opening angle of the acetabular component was 38.4°, the mean anteversion of the acetabular component was 16.4°, and the mean stem position was 0.3° valgus. The average postoperative ambulation time was 2.4 days. The mean Harris hip score was 81.0 at final follow-up, and the mean WOMAC score was 42.9. At final follow-up, there was no case of dislocation. There was no hypersensitivity, no osteolysis, and no revision. Conclusions. Our study suggests that the functional results of modified MI two-incision THA with the use of large-diameter metal on metal articulation in patients with muscle weakness can produce satisfactory early functional recovery and can reduce the dislocation rate


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 2 - 2
1 Sep 2012
Higgins J Pearce A Price M Conn K Stranks G Britton J
Full Access

Introduction. Large head total hip arthroplasty (THA) reduces dislocation rates and provides a theooretically larger range of motion. We hypothesised that this would translate into greater improvement in functional scores when compared to 28mm metal-on-polyethylene THA at 5 years. We believe ours to be the first in vivo comparison study. Methods. A multi-surgeon case-control study in a District General Hospital. The study group consisted of 427 patients with 452 hips, the 38mm uncemented metal-on-metal articulation THA (M2A/Bi-metric, Biomet UK). The control group consisted of 438 age and sex-matched patients with 460 28mm metal-on-polyethylene articulation THA (Exeter/Exeter or Exeter/Duraloc - Stryker UK. All patients were assessed in a physiotherapist led Joint Review Service as part of their standard follow up, with functional scoring using Oxford Hip (scored 0–48) and WOMAC scores (0–100). Results. The demographics for the 38mm and 28mm groups gave mean ages of 65.8 years and 66.4 years, 40.4% and 39.3% male respectively. Pre-operative functional scores were comparable, with Oxford Hip scores of 23.3 and 26.8 respectively, WOMAC 49 compared to 53. At each review point there was no statistical difference in either Oxford or WOMAC scores and this was sustained at 5 yrs. Dislocation rates in the 38mm group were lower (2.9% vs. 5%) though not statistically significant (p = 0.111). Revision rate was significantly higher in the larger head group, primarily due to adverse reaction to metal debris (4.6% vs. 2.0%). Conclusions. There is no functional difference between 38mm metal-on-metal THA and 28mm metal-on-polyethylene THA at five years. Dislocation rates were found to be lower in the 38mm THAs as would be expected, but this was not statistically significant. The difference in revision rates was found to be due to metal-on-metal adverse reactions to metal debris, and their use is therefore not advocated in the current climate


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 232 - 232
1 Jun 2012
Rim YT Hoon PY Young CN
Full Access

The authors modified the original minimally invasive (MI) two-incision total hip arthroplasty (THA) technique and used large-diameter (32mm, 36mm) ceramic-on-ceramic articulation. One hundred and seventy patients that underwent unilateral MI two-incision THA retrospectively reviewed, and surgical morbidities, functional recoveries, radiological implantation properties, and complications were assessed. The mean follow-up was 30.2 months (range, 24-42 months) and mean patient age was 50.4 years (range, 22-83 years). In the lateral position, an anterolateral approach between the gluteus medius and tensor fascia lata and a posterior approach between the piriformis and gluteus medius was used. Mean operation time was 71.2 minutes (range, 48-91 minutes). Mean Harris hip score improved from 41.8 (range, 10-59) to 96.1 (range, 73-100) at last follow-up, and mean WOMAC score from 66.2 (range, 49-96) to 26.9 (range, 24-39). The mean lateral opening angle of the acetabular component was 38.2° (range, 32.1°-47.7°) and the mean stem position was valgus 1.9° (range, varus 2.3° to valgus 4.8°). One patient suffered an intraoperative femur fracture and another underwent revision surgery due to stem subsidence. No patient experienced dislocation. Our data suggest the this modified technique is safe and reproducible in terms of achieving proper implant positioning and early functional recovery. In particular, the complication rates encountered, especially the dislocation rate, were low


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 87 - 87
1 Jun 2012
Hamadouche M Bouxin B Arnould H
Full Access

Introduction. Several devices based upon the dual mobility (DM) concept have recently been FDA approved. However, little is available on the efficiency of current DM on THA instability prevention, and on specific complications. The aim of this retrospective study was to report on the minimal 5-year follow-up results of a cementless DM socket. Methods. Between January 2000 and June 2002, 168 primary consecutive non selected THAs were performed in 92 females and 76 males. The average age at surgery was 67.3 years. A single DM socket design was used (Tregor, Aston Medical, France) consisting of a Ti-sprayed and HA-coated CoCr shell with a highly polished inner surface articulating with a mobile intermediate polyethylene component. The opening diameter of the mobile insert was 6% smaller than that of the femoral head. In 115 hips, the modular femoral head completely covered the Morse taper, whereas a long-neck option leaved the base of the Morse taper uncovered in the remaining 53 hips. Results. At the minimum 5-year follow-up, 119 patients were still alive and had not been revised at a mean of 7.2 years (5-8.9 years), 4 hips were revised for dislocation between the femoral head and the mobile insert (intra-prosthetic dislocation) at a mean of 5.9 years, 22 patients were deceased, and 23 patients were lost to follow-up. Intra-prosthetic dislocation occurred in 4 of the 53 hips (7.5%) with an incompletely covered Morse taper, whereas no dislocation were reported in the remaining 115 hips (p = 0.009). Discussion and Conclusion. A current cementless DM socket was highly effective in the prevention of dislocation following primary THA. However, fatigue damage and wear of the mobile insert at the capturing area can lead to intra-prosthetic dislocation requiring revision. Surgeons should be aware of this specific complication and efforts should be made to avoid aggressive contact at the femoral neck to mobile insert articulation (“3. rd. articulation”)


Introduction. The National Joint Registry of England, Wales, Northern Ireland, and the Isle of Man (NJR) monitors the performance of primary total hip arthroplasty (THA) implants and summarizes usage and outcomes for specific hip systems. The objectives of this study were to 1) determine if survivorship for the PROCOTYL® L acetabular cup, a hemispherical press-fit cup coated with hydroxyapatite and a metal on XLPE articulation, is significantly different from all other cementless cups in the NJR and 2) to analyze patient reported outcomes measures (PROMs) at a minimum five year follow-up for the subject cup. Methods. The database of the NJR was searched for demographic information and survivorship data for all THAs performed with the PROCOTYL® L cup (metal on XLPE) and all other cementless cups. Survivorship data for both groups was adjusted to exclude metal on metal bearings and compared for all revisions and acetabular revisions only. The Cox Proportional Hazards model for the revision risk ratio of the subject cup to all cementless cups was also calculated. Patients with the subject cup implanted for at least five years were mailed a PROMs program questionnaire consisting of the Oxford Hip, EQ-5D, and EQ VAS scores. No pre-operative PROMs scores were collected. Results. Patient demographic information for the subject system and all cementless cups is provided in Figure 1. As seen in Figure 2, the six-year survivorship for the 1,172 THAs using the subject system (97.8%) was slightly higher than the survivorship for all cementless cups (97.5%), but the difference was not statistically significant (Figure 3). The 1, 2, and 5 year survivorship for the subject cup also exceeded the survivorship of all cementless cups, but without statistically significant differences. When just the cup was revised, the subject system survivorship was similar to survivorship for all cementless cups for years 1 through 6 (Figure 2). Patients with the subject system implanted for an average of 5.73 – 5.75 years reported average Oxford Hip, EQ-5D, and EQ VAS Scores of 39.13 ± 9.93, 0.775 ± 0.273, and 75.87 ± 17.71, respectively. Conclusions. The subject acetabular cup was associated with survivorship similar to that of other cementless acetabular cups. Patients implanted with the subject system for at least five years reported what are considered satisfactory Oxford Hip, EQ5D, and EQVAS score outcomes. These results represent the first report of midterm outcomes with the subject system. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 102 - 102
1 May 2019
MacDonald S
Full Access

Metal-on-metal bearings (MoM), in both a total hip and resurfacing application, saw an increase in global utilization in the last decade. This peaked in 2008 in the US, with approximately 35% of bearings being hard-on-hard (metal-on-metal or ceramic-on-ceramic). Beginning in 2008, reports in the orthopaedic literature began to surface regrading local soft tissue reactions and hypersensitivity to metal-on-metal bearings. A major implant manufacturer recalled a resurfacing device in 2010 after national joint registries demonstrated higher than expected revision rates.

Patients with painful metal-on-metal bearings presenting to the orthopaedic surgeon are a difficult diagnostic challenge. The surgeon must go back to basic principles, perform a complete history and physical exam, obtain serial radiographs and basic bloodwork (ESR, CRP) to rule out common causes of pain and determine if the pain is, or is not, related to the bearing.

The Asymptomatic MoM Arthroplasty: Patients will present for either routine followup, or because of concerns regarding their bearing. It is important to emphasise that at this point the vast majority of patients with a MoM bearing are indeed asymptomatic and their bearings are performing well. The surgeon must take into account: a) which specific implant are they dealing with and what is its track record; b) what is the cup position; c) when to perform metal ion testing; d) when to perform further soft tissue imaging (MARS MRI, Ultrasound); e) when to discuss possible surgery. A simple algorithm for both painless and painful MoM Arthroplasties has been developed and will be presented.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 14 - 14
1 Jun 2012
Binazzi R Pria PD Zerbi MD Perdisa F
Full Access

The present clinico-radiographical study evaluated the long term performance of a Ti-Al-V alloy cementless modular press-fit cups (Fitek™) having, on the outer surface, an oriented multilayer titanium mesh (Sulmesh™) with 65% tridimensional porosity and 2 fins applied to the outer surface. Fins were initially designed for anti-rotatory purposes but showed to give an excellent initial mechanical stability. Thus, in the following years, we have designed 2 other cups having 8 fins and ceramic insert. In this paper we compare the design and the results obtained with these 3 cups. We have reviewed the first 100 consecutive FITEK cups implanted in 92 patients with an average FU of 9,7 years (range 9-11 years). Results were evaluated with the Harris score. We had 86 Excellent, 10 Good, 2 Fair and 2 Poor. In this series we always used 28 mm heads. Dysplastic patients showed inferior results compared to arthritics patients in different parameters, as pain, limp, ROM (p < 0.05), putting socks and shoes (p < 0.05). Radiographically, our cups were implanted in a fairly horizontal position (36.5° an average). At the last FU radiolucent lines were present in 14 % of the cases, never progressive. In no case we found a change of position of the cup, and in this series no revision was necessary. Between 2005 and 2008 we have implanted 140 consecutive Delta Fins cups with ceramic-on-ceramic articulation. The fins of this cup have a trapezoidal shape, with HA coating. The cup has an interference of 2 mm. The Delta ceramic insert allows the use of 32 or 36 mm heads. Clinico-radiographical results were very good. One cup needed to be revised for aseptic loosening consecutive to a surgical error (undersizing). The H.M.S. cup is made of Porous Titanium with 8 fins having a triangular section, in order to increase their penetration into cortical bone. The ceramic insert allows even larger ceramic insert (32, 36 and 40). Preliminary clinico-radiographical results were excellent, with complete initial mechanical stability and great ROM due to the large ceramic heads. The presence of fins on the outer surface of cementless cups enhances primary stability and fixation and the use of large ceramic heads improves ROM and subjective patients satisfaction


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 114 - 114
1 May 2013
Haas S
Full Access

Total Knee Arthroplasty has proven to be a successful procedure for improving pain and function. Long-term studies have shown survivorship to be 90% or greater at 20 years. Most patients in those studies were over 60 years old. There has been a large increase in patients under 60 years old who are undergoing knee arthroplasty. Younger patients have much greater demands on the artificial articular surfaces. The average 55 year old is likely to perform two to three time as many gait cycles as the average 65 or 70 year old. Long-term studies demonstrate that polyethylene wear is a major cause of long-term failure.

Newer bearing materials such as cross-linked polyethylenes show promise in reducing wear in THA and more recently in TKA. Femoral component material can significantly influence wear. Studies reveal that in vivo femoral component scratching significantly increases polyethylene wear.

Oxidised Zirconium (OxZr) has been shown to significantly reduce polyethylene wear in knee simulators. The ceramic surface has greater lubricity and is harder. We have examined the in vivo performance on Oxidised Zirconium in several studies. These studies reveal that the harder Oxidised Zirconium femoral surface is much more resistant to scratching than CrCo femurs. Retrieval analysis revealed a 12 fold increase in scratching of CrCo femoral components compared to OxZr. Profilometry analysis of matched pairs of femoral components demonstrates that the surfaces of the CrCo implants significantly roughen over time while the OxZr do not significantly change in vivo. These comparative studies also showed less damage to the tibial polyethylene bearings with the OxZr femoral components compared to CrCo.

Extending longevity of TKA requires improved materials to reduced wear. To optimise this, bearing surfaces must be coupled with improvements in both tibial polyethylene and femoral component materials.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 102 - 102
1 May 2016
Kim J Kim S
Full Access

Background

Theoretically, improved material properties of new alumina matrix composite (AMC) material, Delta ceramics, are expected to decrease concerns associated with pure alumina ceramics and allow manufacturing thinner liners and consequent larger heads. However, limited short-term clinical results are available and mid-term results of these effects are unclear.

Questions/Purposes

(1) Does AMC material decrease the rate of ceramic fracture and noise, concerns of previous-generation ceramics, following change of material properties? (2) Does the possible use of larger heads consequent to manufacturing thinner liners decrease dislocation rate and affect inguinal pain? (3) Do any other complications associated with the use of AMC ceramics occur?


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 94 - 94
23 Feb 2023
Grupp T Schierjott R Pfaff A Tozzi G Schwiesau J Giurea A
Full Access

Total knee arthroplasty with a rotating hinge knee with carbon-fibre-reinforced (CFR)-PEEK as an alternative bushing material with enhanced creep, wear and fatigue behaviour has been clinically established [1-4]. The objective of our study was to compare results from in vitro biotribological characterisation to ex vivo findings on a retrievals. A modified in vitro wear simulation based on ISO 14243-1 was performed for 5 million cycles on rotating hinge knee (RHK) designs (EnduRo®) out of cobalt-chromium and ZrN-multilayer ceramic coating. The rotational & flexion axles-bushings and the flanges are made of CFR-PEEK with 30% polyacrylonitrile fibre content. Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN-multilayer in regard to loosening torques, microscopic surface analysis, distinction between different wear modes and classification with a modified HOOD-score has been performed. For the RHK design with the polyethylene gliding surface and bushings and flanges made out of CFR-PEEK, a cumulative volumetric wear was measured to be 12.9±3.95 mm. 3. in articulation to cobalt-chromium and 1.3±0.21 mm. 3. to ZrN-multilayer coating - a significant 9.9-fold decrease (p=0.0072). For the CFR-PEEK flexion bushing and flanges the volumetric wear rates were 2.3±0.48 mm. 3. /million cycles (cobalt-chromium) and 0.21±0.02 mm. 3. /million cycles (ZrN-multilayer) (p=0.0016). The 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which is in accordance to the time in vivo of 12–60 months of the retrieved RHK components [5]. The main wear modes were comparable between retrievals and in vitro specimens, whereby the size of affected area on the retrieved components showed a higher variation. For the EnduRo® RHK design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN-multilayer coating


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 86 - 86
1 Feb 2020
Dennis D Pierrepont J Bare J
Full Access

Introduction. Instability continues to be the number one reason for revision in primary total hip arthroplasty (THA). Commonly, impingement precedes dislocation, inducing a levering out the prosthetic head from the liner. Impingement can be prosthetic, bony or soft tissue, depending on component positioning and anatomy. The aim of this virtual study was to investigate whether bony or prosthetic impingement occurred first in well positioned THAs, with the hip placed in deep flexion and hyperextension. Methods. Twenty-three patients requiring THA were planned for a TriFit/Trinity ceramic-on-poly cementless construct using the OPS. TM. dynamic planning software (Corin, UK). The cups were sized to best fit the anatomy, medialised to sit on the acetabular fossa and orientated at 45° inclination and 25° anteversion when standing. Femoral components and head lengths were then positioned to reproduce the native anteversion and match the contralateral leg length and offset. The planned constructs were flexed and internally rotated until anterior impingement occurred in deep flexion [Fig. 1]. The type (bony or prosthetic), and location, of impingement was then recorded. Similarly, the hips were extended and externally rotated until posterior impingement occurred, and the type and location of impingement recorded [Fig. 2]. Patients with minimal pre-operative osteophyte were selected as a best-case scenario for bony impingement. Results. 6/23 (26%) patients were planned with only a 32mm articulation (<50mm cup size), with the remaining 17 patients all planned with both 32mm and 36mm articulations (≥50mm cup size). Anterior impingement was 26% prosthetic and 74% bony with the 32mm articulations, and 100% bony with the 36mm articulations. Bony impingement in deep flexion was exclusively anterior neck on anterior inferior iliac spine. Posterior impingement was 57% prosthetic and 43% bony with the 32mm articulations, and 41% prosthetic and 59% bony with the 36mm articulations. Bony impingement in hyperextension was exclusively lesser trochanter (LT) on ischium. Of the patients planned with both 32mm and 36mm articulations, there was a 14% increase in prosthetic impingement when a 32mm head was planned (35% and 21% respectively). Discussion. Impingement in THA usually precedes dislocation and should be avoided with appropriate component positioning. We found that in hyperextension, prosthetic and bony impingement were equally common. In deep flexion, impingement was almost exclusively bony. Further studies should investigate the effects of stem version, cup orientation, liner design, cup depth, native offset and retained osteophytes on the type of impingement in THA. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 30 - 30
24 Nov 2023
van Hoogstraten S Samijo S Geurts J Arts C
Full Access

Aim. Prosthetic joint infections pose a major clinical challenge. Developing novel material surface technologies for orthopedic implants that prevent bacterial adhesion and biofilm formation is essential. Antimicrobial coatings applicable to articulating implant surfaces are limited, due to the articulation mechanics inducing wear, coating degradation, and toxic particle release. Noble metals are known for their antimicrobial activity and high mechanical strength and could be a viable coating alternative for orthopaedic implants [1]. In this study, the potential of thin platinum-based metal alloy coatings was developed, characterized, and tested on cytotoxicity and antibacterial properties. Method. Three platinum-based metal alloy coatings were sputter-coated on medical-grade polished titanium discs. The coatings were characterized using optical topography and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Ion release was measured using inductively coupled plasma optical emission spectrometry (ICP-OES). Cytotoxicity was tested according to ISO10993-5 using mouse fibroblasts (cell lines L929 and 3T3). Antibacterial surface activity, bacterial adhesion, bacterial proliferation, and biofilm formation were tested with gram-positive Staphylococcus aureus ATCC 25923 and gram-negative Escherichia coli ATCC 25922. Colony forming unit (CFU) counts, live-dead fluorescence staining, and SEM-EDS images were used to assess antibacterial activity. Results. Three different platinum-based metal alloys consisting of platinum-iridium, platinum-copper, and platinum-zirconium. The coatings were found 80 nm thick, smooth (roughness average < 60 nm), and non-toxic. The platinum-copper coating showed a CFU reduction larger than one logarithm in adherent bacteria compared to uncoated titanium. The other coatings showed a smaller reduction. This data was confirmed by SEM and live-dead fluorescence images, and accordingly, ICP-OES measurements showed low levels of metal ion release from the coatings. Conclusions. The platinum-copper coating showed low anti-adhesion properties, even with extremely low metal ions released. These platinum-based metal alloy coatings cannot be classified as antimicrobial yet. Further optimization of the coating composition to induce a higher ion release based on the galvanic principle is required and copper looks most promising as the antimicrobial compound of choice. Acknowledgments. This publication is supported by the DARTBAC project (with project number NWA.1292.19.354) of the research program NWA-ORC which is (partly) financed by the Dutch Research Council (NWO); and the AMBITION project (with project number NSP20–1-302), co-funded by the PPP Allowance made available by Health-Holland, Top Sector Life Sciences & Health to ReumaNederland


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 90 - 90
1 May 2019
Lee G
Full Access

Total hip arthroplasty (THA) is effective, reproducible, and durable in the treatment of hip joint arthritis. While improvements in polyethylene materials have significantly reduced wear rates and osteolysis, aseptic loosening of implants remains one of the leading causes of revision THA. Additionally, fears of dislocation and instability have driven the increase in the utilization of larger diameter femoral heads in primary THA which can lead to increased wear when coupled with a polyethylene articulation. Finally, the increasing number of younger and active patients undergoing THA raises questions with regards to the ability of modern conventional bearings to provide durability and longevity beyond second and third decades following joint implantation. Ceramic-on-ceramic articulations are ideally suited for today's young and high demand patients undergoing primary THA. It has the lowest in-vitro wear properties of any bearing couple and the wear characteristics are further improved by its wettability and lubrication particularly when larger heads are utilised. Additionally, improvements in material properties and prosthesis design have significantly decreased fracture rates and increased the reliability of these implants. Furthermore, reported outcomes and longevity of modern ceramic-on-ceramic THAs in younger patients have all shown excellent survivorship despite patients achieving and maintaining a very high level of activity and function. In short, it is the bearing couple most in tune with current market demands and utilization trends. While registry data and meta-analyses of published literature have failed to show the superiority of ceramic-on-ceramic articulations compared to conventional bearings at 10 years, there is evidence that even highly crosslinked polyethylene (HXPE) is not immune to wear. Selvarajah et al. reported steady, in-vivo wear rates of HXPE exceeding 0.1mm/year threshold in young THA patients with 36mm ceramic ball heads. Additionally, small osteolytic lesions have been observed in hips with HXPE bearings at 12–14 years follow up. Finally, analysis of all controlled randomised studies have shown less osteolysis of ceramic-on-ceramic hips compared to polyethylene articulations. The significance of these lesions are unclear but the question remains: Can HXPE as a bearing be able to provide over 30 years of service needed to outlast patients younger than 60 years?. Concerns with cost, squeaking, and fractures do not make ceramic-on-ceramic bearings suitable for all patients undergoing primary THA. However, in young, healthy and active patients, a modern ceramic- on-ceramic articulation is most likely to provide the lowest wear rates, lowest risk of osteolysis, and greatest chance for life-long durability


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 22 - 22
1 Apr 2019
Ramos A Bola M Simoes JA
Full Access

Introduction. Shoulder arthoplasty has increased in the last years and its main goal is to relieve pain and restore function. Shoulder prosthesis enters in the market without any type of pre-clinical tests. Within this paper we present study experimental and computational tests as pre-clinical testing to evaluate total shoulder arthoplasty performance. Materials and methods. An in vitro experimental simulator was designed to characterize experimentally the intact and implanted shoulder glenoid articulation. Fourth generation Sawbones® composite left humerus and scapula were used and the cartilage was replicated with silicone for the intact articulation (figure 1). In the intact experimental articulation we considered the inferior glenohumeral ligament as an elastic band with equivalent mechanical properties. For the implanted shoulder, the Comprehensive® Total Shoulder System (Biomet®) with a modular Hybrid® glenoid base and Regenerex® central post was considered (figure 2). The prostheses were implanted by an experienced surgeon and clinical results from orthopedic registers were collected. The system structures were placed to simulate 90º in abduction, including the following muscle forces: Deltoideus 300N, Infraspinatus 120N, Supraspinatus 90N and Subscapularis 225N. The finite element model was created with tetrahedral linear elements with linear elastic and isotropic material for the humerus in figure 3, (Young's modulus for cortical bone − 16.5 GPa; trabecular bone − 124 MPa). Anisotropic behavior was considered for the scapula model (E11 = 342.1 MPa, E22 = 212.8 MPa, E33 = 194.4 MPa). The shoulder prosthesis was of polyethylene with 1GPa and titanium with 110 GPa. The Poisson's ratio was 0.3 in all material, except for polyethylene where we assumed a value of 0.4. A long-term post-operative condition was simulated. Results. The experimental results were compared with numerical ones for model validation. The strains measured evidence the effect of the implant presence, manly in the scapula. In the anterior region presents an increase of strains (+26%) was observed for the anterior region and decrease (−52%) in the posterior region, suggesting strain shielding in figure 4. At the glenoid cavity, the numerical principal strains present safety values of strains (200 to 2500) µε in both axial and coronal planes. This indicates that on the long-term the glenoid prosthesis is well fixed to the surrounding bone tissue and bone integrity is maintained despite the presence of the implant. However there are some peak values (2500, 25 000 µε) that were observed in some small areas in the posterior and distal regions. Results were compared with clinical ones. Discussion and Conclusions. The proposed pre-clinical test with the articulation at 90º in abduction can predict bone behavior when total shoulder prosthesis is implanted and in the long term post-operative condition. The results obtained evidence some critical regions around the glenoid component. This pre-clinical test can be implemented to improve the concepts before market