Aims. The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the
The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro environment, based on the evaluation of the zone of inhibition (ZOI). The hypothesis was that there would be no significant difference in the inhibition of methicillin-sensitive or methicillin-resistant A total of 30 beads made of three different materials (tantalum/3D porous titanium and smooth titanium alloy) were bathed for one hour in a solution of 1 g vancomycin in 20 ml of sterile water for injection (bath concentration: 50 mg/mL). Ten 1 cm3 cylinders of antibiotic-loaded cement were also created by mixing standard surgical cement with 1 g of vancomycin in standardized sterile moulds. The cylinders were then placed on agar plates inoculated with MSSA and MRSA. The ZOIs were measured each day and the cylinders were transferred onto a new inoculated plate.Aims
Methods
Over the last decades, biodegradable metals emerged as promising materials for various biomedical implant applications, aiming to reduce the use of permanent metallic implants and, therefore, to avoid additional surgeries for implant removal. However, among the important issue to be solved is their fast corrosion - too high to match the healing rate of the bone tissue. The most effective way to improve this characteristic is to coat biodegradable metals with substituted calcium phosphates. Tricalcium phosphate (β-TCP) is a resorbable bioceramic widely used as synthetic bone graft. In order to modulate and enhance its biological performance, the substitution of Ca2+ by various metal ions, such as strontium (Sr2+), magnesium (Mg2+), iron (Fe2+) etc., can be carried out. Among them, copper (Cu2+), manganese (Mn2+), zinc (Zn2+) etc. could add
Staphylococcus aureus is the most frequently isolated organism in periprosthetic joint infections. The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding of its antibacterial characteristics is needed. We sought to analyze the
Abstract. 3D printing of synthetic scaffolds mimicking natural bone chemical composition, structure, and mechanical properties is a promising approach for repairing bone injuries. Direct ink writing (DIW), a type of 3D printing, confers compatibility with a wide range of materials without exposing these materials to extreme heat. Optimizing ink properties such as filament formation capabilities, shear-thinning, and high storage modulus recovery would improve DIW fabrication characteristics. In this study, composite inks based on biodegradable polycaprolactone (PCL), reinforced with nano-hydroxyapatite (HAp), and loaded with vancomycin were designed and evaluated for their rheological properties, wettability, mechanical
Aims. The aims of this study were to compare the mean duration of antibiotic release and the mean zone of inhibition between vancomycin-loaded porous tantalum cylinders and antibiotic-loaded bone cement at intervals, and to evaluate potential intrinsic
Uncemented implants combining
Aim. Antibacterial activity of coatings based on metal and metal oxide nanoparticles (NPs) often depends on materials and biotic targets resulting in a material-specific killing activity of selected Gram-positive and Gram-negative bacteria, including drug-resistant strains. In this perspective, the NPs loading amount, the relative elemental concentration inside the nanogranular building blocks and the deposition method are of paramount importance when the goal is to widen the antimicrobial spectrum, but at the same time to avoid high levels of metal content to limit undesired toxic effects. Aim of the present study was evaluation of the
Introduction. Periprosthetic joint infection (PJI) remains the main cause of failure in primary and revision total knee arthroplasties (TKAs). Local delivery of antibiotics, mainly antibiotic-loaded bone cement (ALBC), is commonly employed to prevent PJI. Over the past decade, tantalum and porous titanium have been successfully utilized as metaphyseal fixation devices to address bone loss and improve biologic fixation during revision TKA. However, no study has examined the
Aims. Tantalum (Ta) trabecular metal components are increasingly used
to reconstruct major bone defects in revision arthroplasty surgery.
It is known that some metals such as silver have antibacterial properties.
Recent reports have raised the question regarding whether Ta components
are protective against infection in revision surgery. This laboratory
study aimed to establish whether Ta has intrinsic antibacterial
properties against planktonic bacteria, or the ability to inhibit
biofilm formation. Materials and Methods. Equal-sized pieces of Ta and titanium (Ti) acetabular components
were sterilised and incubated with a low dose inoculum of either Staphylococcus
(S.) aureus or S. epidermidis for 24 hours.
After serial dilution, colony forming units (cfu) were quantified
on Mueller-Hinton agar plates. In order to establish whether biofilms
formed to a greater extent on one material than the other, these
Ta and Ti pieces were then washed twice, sonicated and washed again
to remove loosely adhered planktonic bacteria. They were then re-incubated
for 24 hours prior to quantifying the number of cfu. All experiments
were performed in triplicate. Results. More than 1x10. 8. cfu/ml were observed in both the Ta
and Ti experiments. After washing and sonication, more than 2x10. 7. cfu/ml
were observed for both Ta and Ti groups. The results were the same
for both S. aureus and S. epidermidis. Conclusion. Compared with Ti controls, Ta did not demonstrate any intrinsic
antibacterial activity or ability to inhibit biofilm formation.
Hence, intrinsic
Objectives. The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery. Materials and Methods. Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm. 2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted. Results. No colonies were observed when UV irradiation was performed after the bacteria were added to the disks. When the bacteria were seeded after UV irradiation, the amount of surviving bacteria on the Ti and Ti6Al4V disks decreased at 0 hours and then gradually increased. However, the antimicrobial activity was maintained for seven days after UV irradiation. Conclusion. Antimicrobial activity was induced for seven days after UV irradiation on both types of disk. Irradiated Ti6Al4V and Ti had similar
Post-surgical infections are still one of the most frequent adverse events in the prosthetic surgery. PMMA-based cements are widely employed in orthopaedic surgery as filler or prosthetic fixing device. The main problems associated with this material are poor bone integration and infection development. Aiming to avoid bacterial adhesion and to extend the longevity of implants, different solutions were proposed, both in terms of operative procedures and new materials development. Regarding the materials advancement, innovative PMMA-based composite bone cements, contemporaneously bioactive and antibacterial (without the use of antibiotics), were developed. The composites are based on a PMMA matrix containing a bioactive glass, doped with antibacterial ions (Ag+ or Cu++); so, the same filler shows at the same time the ability of promoting bone ingrowth and an antibacterial effect. Composite cements were characterized in terms of morphology and composition, curing parameters and mechanical properties; in vitro tests were performed to verify the material ability to release antibacterial ions and to promote the precipitation of hydroxyapatite. Moreover, cytotoxicity and
Introduction. Implant associated infections are responsible for over 10 % of recorded orthopaedic revision surgeries across the UK, with higher infection rates commonly observed for other endoprostheses such as cranioplasties. To prevent colonization and biofilm formation on implant surfaces, the use of silver coatings has shown positive results in clinical setting due to its synergistic function with conventional antibiotic prophylaxes. Additive manufacturing allows manufacture of entirely new implant geometries such as lattice structures to enhance osseointegration, however this limits the ability to uniformly coat implants. Direct integration of silver into the powder feedstock for selective laser melting (SLM) may allow manufacture of a biomedical alloy with innate, long lasting
Introduction. Tantalum trabecular metal components are increasingly used to reconstruct major bone defects in revision arthroplasty surgery. It is known that some metals such as silver have antibacterial properties. Recent reports have raised the question as to whether Tantalum components are protective against infection in revision surgery. This is based on a retrospective, single institution review, of revision cases comparing tantalum with titanium acetabular implants, which reported a lower incidence of subsequent infection in the tantalum group. This laboratory study aimed to establish if tantalum had any intrinsic antibacterial properties against planktonic bacteria or ability to inhibit biofilm formation. Materials and methods. Equal sized pieces of tantalum (Trabecular metal, Zimmer UK) and titanium (Trilogy, Zimmer UK) were sterilised and then incubated with a low dose inoculum of either Staphylococcus aureus or Staphylococcus epidermidis for 24 hours. After serial dilution, colony forming units were quantified on MH agar plates. To establish the ability to inhibit biofilm formation these tantalum and titanium pieces were then washed twice, sonicated and washed again to remove loosely adhered planktonic bacteria. They were then re-incubated for 24 hours prior to quantifying colony forming units. All experiments were performed in triplicate. Results. More than 1×10. 8. cfu/ml were observed in both the titanium and tantalum experiments. After washing and sonication more than 2×10. 7. cfu/ml were observed for both tantalum and titanium groups. The results were the same for both Staph Aureus and Staph Epidermidis. Discussion. Compared with titanium controls tantalum did not demonstrate any intrinsic antibacterial activity or ability to inhibit biofilm formation. The intrinsic properties of tantalum do not account for the previously observed reduction in subsequent infection when tantalum was used in the revision procedure. Conclusion. Tantalum does not have any intrinsic
Platelet-rich plasma is a new inductive therapy which is being increasingly used for the treatment of the complications of bone healing, such as infection and nonunion. The activator for platelet-rich plasma is a mixture of thrombin and calcium chloride which produces a platelet-rich gel. We analysed the antibacterial effect of platelet-rich gel in vitro by using the platelet-rich plasma samples of 20 volunteers. In vitro laboratory susceptibility to platelet-rich gel was determined by the Kirby-Bauer disc-diffusion method. Baseline antimicrobial activity was assessed by measuring the zones of inhibition on agar plates coated with selected bacterial strains. Zones of inhibition produced by platelet-rich gel ranged between 6 mm and 24 mm (mean 9.83 mm) in diameter. Platelet-rich gel inhibited the growth of Staphylococcus aureus and was also active against Escherichia coli. There was no activity against Klebsiella pneumoniae, Enterococcus faecalis, and Pseudomonas aeruginosa. Moreover, platelet-rich gel seemed to induce the in vitro growth of Ps. aeruginosa, suggesting that it may cause an exacerbation of infections with this organism. We believe that a combination of the inductive and
The use of platelet-leukocyte gel (PLG), made from platelet rich plasma, to stimulate bone formation and wound healing has been investigated extensively. As leukocytes play an important role in the innate host-defence, we hypothesised that PLG might also have
Summary. The two-step labeling protocol using Lysostaphin and bio-orthogonal click chemistry for staining bacteria is described. The click protocol is efficient in labeling staphylococci and is non-toxic. This protocol promises the efficient of infections that are difficult to assess by conventional imaging. Introduction. Infection diagnostics in clinics is time consuming, invasive and relays on microbiological cultures. New probes and labeling protocols enabling rapid and specific detection of infection in vivo shall improve the situation. We investigated the potential of a new click labeling protocol to detect staphylococci. Azido (N3) - modified Lysostaphin and DIBO (Di-benzocyclooctyne) - dye were used in the two-step bacteria-labeling protocol. N3 and DIBO were the counterparts of the bioorthogonal “click” reaction. In the first step, Lysostaphin-N3 bound to Staphylococcus aureus. In the second step, N3 clicked to DIBO thus achieving S. aureus selective labeling. Methods. S. aureus NCTC 10788 and E. coli NCTC 12241 (from National Collection of Type Cultures), primary sheep osteoblasts and C57BL/6 mice were used for this study. DIBO-Alexa488 (Invitrogen ®), DyeLight488 (Thermofisher ®), NHS-N3 (Lumiprobe ®), Lysostaphin (Sigma-Aldrich ®) were purchased. In vitro we used standard microbiological protocols to assess antimicrobial and labeling activity of the “click” probe (Lysostaphin-N3 plus DIBO-dye), one-step-labeled Lysostaphin-Dye and non-labeled Lysostaphin. Flow cytometry, Fluorescence microscopy, and Spectrophotometry were employed to measure binding of the probes to bacteria. The cytotoxicity of the probes on osteoblasts was performed using Presto Blue Cell Viability test (Invitrogen ®). In vivo we used Fluorescence Intravital Microscopy and mice with dorsal skin-fold chambers (approved by the local governmental animal care committee). Subsequently to anesthesia each mouse received S. aureus strain Cowan I intravenously. This was followed by intravenous injections of the test probes. Results. Lysostaphin-N3 partially lost its
Introduction: Deep periprosthetic infections are infrequent but devastating situations in total joint arthroplasty. During the last years the total number and the percentage of total joint infections with multiresistant bacteria has increased. The aim of this study was to investigate the antimicrobial activity of a new bone cement loaded with nanoparticulate silver against bacteria with different antibiotic resistance. Material and Methods: An in vitro proliferation test was used to test
Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.Aims
Methods
INTRODUCTION. Biomaterial-related infections are an important complication in orthopaedic surgery [1], and Staphylococcus sp. accounts for more than half of the prosthetic joint infection cases [2]. Adhesion of bacteria to biomaterial surfaces is a key step in pathogenesis of such infections [3]. Titanium alloys are widely used in orthopaedic implants because their biocompatibility [4]. Surface incorporation of ions with