A number of techniques have been developed to improve the immediate mechanical
Objectives. Osteoporosis and osteomalacia lead to increased fracture risk. Previous studies documented dysregulated osteoblast and osteoclast activity, leading to a high-turnover phenotype, reduced bone mass and low bone mineral content. Osteocytes, the most abundant bone cell type, are involved in bone metabolism by enabling cell to cell interaction. Osteocytes presence and viability are crucial for bone tissue homeostasis and mechanical integrity. Osseo-integration and implant degradation are the main problems in developing biomaterials for systemically diseased bone. This study examines osteocyte localisation, morphology and on the implant surface and at the implant bone interface. Furthermore, the study investigates ECM proteins regulation correlated to osteocytes and mechanical competence in an ovariectomised rat model with a critical size metaphyseal defect. Methodology. After induction of osteoporosis, 60 female Sprague-Dawley rats were randomised into five groups: SrCPC (n=15), CPC (n=15), ScB30 (n=15), ScB30Sr20 (n=15) and empty defect (n=15). The left femur of all animals underwent a 4mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with the above mentioned implants or left empty. After six weeks, histomorphometric analysis showed a statistically significant increase in bone formation at the tissue-implant interface in the SrCPC group compared to the other groups (p<0.01). Osteocyte morphology and networks were detected using silver and staining. ECM proteins were investigated through immunohistochemistry. Cellular populations were tested using enzyme histochemistry. Mineralisation was assessed using time of flight secondary ion mass spectrometry (TOF-SIMS). Statistical analysis was performed using Mann Whitney U test with Bonferroni correction. Results. In the SrCPC and compared to other test groups, osteocytes presence and morphology was enhanced. An increased osteocytic activity was also seen in ScB30Sr20 when compared to SCB30 alone. Local osteomalatic lesions characterised by the presence of excessive unmineralised osteoid as revealed by the VKVG staining in the intact bone was also seen. A regular pattern of osteocytes distribution reflecting a better bone maturation was also seen in case of the Sr substituted cements. Whereas in case of the ScB30 degenerated osteocytes with a comparatively irregular arrangement were seen. Nonetheless, ECM proteins indicating discrepant bone turnover (RANKL, OPG, BMP2, OCN; ASMA) were noticed to increase within these regions and were accompanied by the presence of apoptotic osteocytes. Interestingly, osteocytes were also localised near the blood vessels within the newly formed woven bone. On the other hand, osteocytes allocation at implant bone interface and on the implant surface were qualitatively better in the Sr substituted groups when compared to the other test groups. Furthermore, this correlates with healing enhancement and implant retention results obtained from the histomorphometry (BV/TV and Osteoclasts count). The first qualitative results of the sclerostin visualisation showed a lower expression in the Sr supplemented biomaterials compared to the Sr free ones. Conclusion. Osteoblasts, osteoclast and osteocytes are the key players to bone metabolism through production and mineralisation of ECM or resorption. The current study indicates the importance in therapeutically targeting osteocytes to regulate bone metabolism in osteoporotic/osteomalatic bone. Sr inhibits osteoclast activity which is important for implant degradation. However, in osteoporotic bone osteoclasts inhibition is crucial to enhance the healing. Our data suggest that osteocytes allocation at the bone implant interface and on the implant surface is aiding in implant degradation through osteocytes dependent resorption. Currently, discrepancies in mechanosensitivity, proliferation and fibrotic tissue formation are being investigated together with several
Efficient, repeatable and reliable insertion of microneedles into skin is paramount to ensure efficacious drug and vaccine delivery, as well as effective microneedle-based biosensing. Through maintaining robust mechanical adhesion, this microneedle platform offers significant potential in therapeutic delivery and longitudinal wearable applications. Here, we have shown that an angled microneedle design, which is conducive to self-administration, has the potential to address key limitations in existing microneedle technology.
Majority of osteoporosis related fractures are treated surgically using metallic fixation devices.
Miniscrew implants (MSIs) are widely used to provide absolute
Primary implant stability is critical for osseointegration and subsequent implant success. Small displacements on the screw/bone interface are necessary for implant success, however, larger displacements can propagate cracks and break
Introduction. Stemless shoulder implants have recently gained increasing popularity. Advantages include an anatomic reconstruction of the humerus with preservation of bone stock for upcoming revisions. Several implant designs have been introduced over the last years. However, only few studies evaluated the impact of the varying designs on the load transfer and bone remodeling. The aim of this study was to compare the differences between two stemless shoulder implant designs using the micro finite element (µFE) method. Materials and Methods. Two cadaveric human humeri (low and high bone mineral density) were scanned with a resolution of 82µm by high resolution peripheral quantitative computer tomography (HR-pQCT). Images were processed to allow virtual implantation of two types of reverse-engineered stemless humeral implants (Implant 1: Eclipse, Arthrex, with fenestrated cage screw and Implant 2: Simpliciti, Tornier, with three fins). The resulting images were converted to µFE models consisting of up to 78 million hexahedral elements with isotropic elastic properties based on the literature. These models were subjected to two loading conditions (medial and along the central implant axis) and solved for internal stresses with a parallel solver (parFE, ETH Zurich) on a Linux Cluster. The bone tissue stresses were analysed according to four subregions (dividing plane: sagittal and frontal) at two depths starting from the bone-implant surface and the distal region ending distally from the tip of Implant 1 (proximal, distal). Results. Medial loads produced higher bone tissue stresses when loading was applied along the implant axis. This was more prominent in the lower density bone, causing more than 3 times higher stresses in the highest region for both implants. Bone tissue stresses were also shown to be higher in the low density specimen, especially in the distal zone. The maximum bone tissue stress ratio for low/high density bone reached 4.4 below Implant 1 and 2.2 below Implant 2, occurring both with a medially-directed load. For both implants, the highest bone tissue stresses were predicted in the distal region than in the proximal region, with larger distal-to-proximal stress ratios below Implant 1 than Implant 2 (3.8 and 1.7, respectively). Discussion. Our µFE analyses show that the implant
We used dual-energy x-ray absorptiometry (DEXA) to evaluate the extent of periprosthetic bone remodelling around a prosthesis for distal femoral reconstruction, the Kotz modular femoral tibial replacement (KMFTR; Howmedica, Rutherford, New Jersey). A total of 23 patients was entered into the study which had four parts: 1) 17 patients were scanned three times on both the implant and contralateral legs to determine whether the precision of DEXA measurements was adequate to estimate bone loss surrounding the
This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods
Entheses are the
Hip fractures constitute the most debilitating complication of osteoporosis with a steadily increasing incidence in an aging population. Intramedullary nailing of osteoporotic proximal femoral fractures can be challenging because of poor implant
Adhered bacteria on titanium surfaces are able to decrease its corrosion potential and impedance values at the lowest frequencies. This result points to the detrimental influence of the biofilm on the passive film formed on the surfaces, independently on the surface finishes. Titanium is one of the most used metallic biomaterials for biological and implant applications. The spontaneous formation of a protective passive film around 2–5 nm thick, make titanium unique as a biomaterial for implants. Its composition has been described by a three-layer model: TiO2/Ti2O3/TiO and its stability is ultimately responsible for the success of osseointegrated titanium implants. The cases of breakdown of the protective passive film are associated with highly acidic environments induced by bacterial biofilms and/or inflammatory processes that lead to localized corrosion of titanium and, in extreme cases, implant failure. Bearing in mind that the surface design of a titanium implant is a key element involved in the healing mechanisms at the bone-implant interface, the surface modifications have sought to enhance the biomechanical
Long bone fractures are a commonly presented paediatric injury. Whilst the possibility of either accidental or non-accidental aetiology ensures significant forensic relevance, there remain few clinical approaches that assist with this differential diagnosis. The aim of this current study was to generate a reproducible model of spiral fracture in immature bone, allowing investigation of the potential relationship between the rotational speed and the angle of the subsequent spiral fracture. Seventy bovine metacarpal bones were harvested from 7 day old calves. Sharp dissection ensured removal of the soft tissue, whilst preserving the periosteum. The bones were then distributed evenly before eleven groups, before being aligned along their central axis within a torsional testing machine. Each group of bones were then tested to failure at a different rotational speed (0.5, 1, 15, 20, 30, 40, 45, 60, 75, 80 and 90 degrees s-1). The angle of spiral fracture, relative to the long axis, was then measured, whilst the fracture location, the extent of comminution and periosteal disruption, were all recorded. Sixty-two out of 70 specimens failed in spiral fracture, with the remaining tests failing at the
Spinal total disc replacement (TDR) designs rely heavily on total hip replacement (THR) technology and it is therefore prudent to check that typical TDR devices have acceptable friction and torque behaviour. For spherical devices friction factor (f) is used in place of friction coefficient (mju). The range of loading for the lumbar spinal discs is estimated at perhaps 3 times body weight (BW) for normal activity rising to up to 6 times BW for strenuous activity. [1]. For walking this equates to around 2000 N, which is the maximum load required by the ISO standard for TDR wear testing. [2]. . Three Prodisc-L TDR devices (Synthes Spine) were tested in a single station friction simulator. Bovine serum diluted to 25% was used as a lubricating medium. Flexion-extension was ±5 deg for all experiments with constant axial loading of 500, 2000 and 3000 N. The cycle run length was limited to 100 and the f and torque (T) values recorded around the maximum velocity of the cycle point and averaged over multiple cycles. Preliminary results shows that the 500 N loading produced the largest f of 0.05 ± 0.004. The 2000 N load, which approximates daily activity, gave f = 0.036 ± 0.05 and the 3000 N load gave f = 0.013 ± 0.003. The trend was for lower f with increasing loads. A lumbar TDR friction factor of 0.036 for a 2000N load and the reduction in f for increasing loads is comparable to the lower end of the range of values reported for THR in similar simulator studies using metal-on-polyethylene bearing materials. [3]. The 3000 N result showing that increasing the load above that expected in daily activity does not raise the f could be important when considering rotational stability and
Summary Statement. Corin has developed bone conserving prosthesis (MiniHip™) to better replicate the physiological load distribution in the femur. This study assessed whether the MiniHip™ prosthesis can better match the pre-osteoarthritic head centre for patient demographics when compared to contemporary long stem devices. Introduction. Leg length and offset discrepancy resulting from Total Hip Replacement (THR) is a major cause of concern for the orthopaedic community. The inability to substitute the proximal portion of the native femur with a device that suitably mimics the pre-operative offset and head height can lead to loss of abductor power, instability, lower back pain and the need for orthodoses. Contemporary devices are manufactured based on predicate studies to cater for the variations within the patient demographic. Stem variants, modular necks and heads are often provided to meet this requirement. The number of components and instruments that manufacturers are prepared to supply however is limited by cost and an unwillingness to introduce unnecessary complexity. This can restrict the ability to achieve the pre-osteoarthritic head centre for all patient morphologies. Corin has developed MiniHip™ to better replicate the physiological load distribution in the femur. This study assessed whether the MiniHip™ prosthesis can better match the pre-osteoarthritic head centre for patient demographics when compared to contemporary long stem devices. Methods. The Dorr classification is a well accepted clinical method for defining femoral endosteal morphology. This is often used by the surgeon to select the appropriate type and size of stem for the individual patient. It is accepted that a strong correlation exists between Flare Index (FI), characterising the thinning of cortical walls and development of ‘stove-pipe’ morphology, and age, in particular for females. A statistical model of the proximal femur was built from 30 full length femoral scans (Imorphics, UK). Minimum and maximum intramedullary measurements calculated from the statistical model were applied to relationships produced by combining Corins work with that of prior authors. This data was then used to generate 2D CAD models into which implants were inserted to compare the head centres achievable with the MiniHip™ compared to those of a contemporary long stem. Results. Results for the CAD overlay indicated the MiniHip prosthesis is better suited to restoring head centre for a range of morphological variations. In contrast, the long stem prosthesis requires a larger size range and increased inventory in terms of stem variants and modular components to achieve the same array of head centres. The disparity between the Corin FI and that of prior authors can be accounted for by the methods employed; the greyscale-based edge detection (Imorphics) compared to a manual identification method. Discussion/Conclusion. By overlaying the Corin MiniHip™ over the CAD representation of anticipated flare index, it is evident that the MiniHip™ stem is more suitable for the anticipated range of morphologies. The versatility of this design enables the restoration of head height and offset regardless of canal geometry, degree of offset and or CCD angle. This is not the case for contemporary long stem devices which rely on a more diaphyseal region for
Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues. A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.Objectives
Methods
Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data.Objectives
Methods
All-suture anchors are increasingly used in rotator cuff repair procedures. Potential benefits include decreased bone damage. However, there is limited published evidence for the relative strength of fixation for all-suture anchors compared with traditional anchors. A total of four commercially available all-suture anchors, the ‘Y-Knot’ (ConMed), Q-FIX (Smith & Nephew), ICONIX (Stryker) and JuggerKnot (Zimmer Biomet) and a traditional anchor control TWINFIX Ultra PK Suture Anchor (Smith & Nephew) were tested in cadaveric human humeral head rotator cuff repair models (n = 24). This construct underwent cyclic loading applied by a mechanical testing rig (Zwick/Roell). Ultimate load to failure, gap formation at 50, 100, 150 and 200 cycles, and failure mechanism were recorded. Significance was set at p < 0.05.Objectives
Materials and Methods
Anatomical descriptions of the lateral retinaculum have been published, but the attachments, name or even existence of its tissue bands and layers are ill-defined. We have examined 35 specimens of the knee. The deep fascia is the most superficial layer and the joint capsule is the deepest. The intermediate layer is the most substantial and consists of derivatives of the iliotibial band and the quadriceps aponeurosis. The longitudinal fibres of the iliotibial band merge with those of the quadriceps aponeurosis adjacent to the patella. These longitudinal fibres are reinforced by superficial arciform fibres and on the deep aspect by transverse fibres of the iliotibial band. The latter are dense and provide attachment of the iliotibial band to the patella and the tendon of vastus lateralis obliquus. Our study identifies two important new findings which are a constant connection of the deep fascia to the quadriceps tendon superior and lateral to the patella, and, a connection of the deeper transverse fibres to the tendon of vastus lateralis obliquus.
The treatment of fractures of the proximal tibia is complex and makes great demands on the implants used. Our study aimed to identify what levels of primary stability could be achieved with various forms of osteosynthesis in the treatment of diaphyseal fractures of the proximal tibia. Pairs of human tibiae were investigated. An unstable fracture was simulated by creating a defect at the metaphyseal-diaphyseal junction. Six implants were tested in a uniaxial testing device (Instron) using the quasi-static and displacement-controlled modes and the force-displacement curve was recorded. The movements of each fragment and of the implant were recorded video-optically (MacReflex, Qualysis). Axial deviations were evaluated at 300 N. The results show that the nailing systems tolerated the highest forces. The lowest axial deviations in varus and valgus were also found for the nailing systems; the highest axial deviations were recorded for the buttress plate and the less invasive stabilising system (LISS). In terms of rotational displacement the LISS was better than the buttress plate. In summary, it was found that higher loads were better tolerated by centrally placed load carriers than by eccentrically placed ones. In the case of the latter, it appears advantageous to use additive procedures for medial buttressing in the early phase.