Abstract
Entheses are the anchorage sites of tendons to bones in the musculoskeletal system. They have a unique microanatomy that allow smooth transfer of mechanical load through tendon to bone. However, entheses are prone to injury due to their small surface area1,2. The overall success rate of the current gold standard treatment (directly attaching the tendon to bone) is small3,4. Consequently, the aim of this study was to evaluate different hydrogels and their suitability for developing an in-vitro co-culture system to manufacture 3D tissue interfaces.
To create a 3D in-vitro tissue interface, half-well plugs were created by pouring silicone in wells of a 24-well plate. When set, it was cut into halves to be used as half-well plugs, blocking one side of a culture well. A tendon-cell-encapsulated hydrogel was poured into the exposed half and, when set, the plug was removed and a bone-cell-encapsulated gel was added. Cells were fluorescently labelled to enable identification of cell types under fluorescent microscopy (Tendon – green, bone – red). The suitability of different hydrogels to form an in vitro tissue interface was evaluated: fibrin, agarose and gellan.
This study demonstrates that 3D co-cultures can be manufactured in-vitro. The novel system enabled the culture of two cell types (bone/tendon) in direct contact, creating an in-vitro interface. In addition, this study shows that fibrin gel supports cell morphology, while both cell types failed to show normal morphology in agarose and gellan. Further studies evaluating cell viability in these hydrogels are currently underway.