Advertisement for orthosearch.org.uk
Results 1 - 20 of 211
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 132 - 132
11 Apr 2023
van Hoogstraten S Arts J
Full Access

Malalignment is often postulated as the main reason for the high failure rate of total ankle replacements (TARs). Only a few studies have been performed to correlate radiographic TAR malalignment to the clinical outcome, but no consistent trends between TAR alignment parameters and the clinical outcome were found. No standard TAR alignment measurement method is present, so reliable comparison between studies is difficult. Standardizing TAR alignment measurements and increasing measurable parameters on radiographs in the clinic might lead to a better insight into the correlation between malalignment and the clinical outcome. This study aims to develop and validate a tool to semi-automatic measure TAR alignment, and to improve alignment measurement on radiographs in the clinic. A tool to semi-automatically measure TAR alignment on anteroposterior and lateral radiographs was developed and used by two observers to measure TAR alignment parameters of ten patients. The Intraclass Coefficient (ICC) was calculated and accuracy was compared to the manual measurement method commonly used in the clinic. The tool showed an accuracy of 76% compared to 71% for the method used during follow-up in the clinic. ICC values were 0.94 (p<0.01) and higher for both inter-and intra-observer reliability. The tool presents an accurate, consistent, and reliable method to measure TAR alignment parameters. Three-dimensional alignment parameters are obtained from two-dimensional radiographs, and as the tool can be applied to any TAR design, it offers a valuable addition in the clinic and for research purposes


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 5 - 5
17 Apr 2023
Aljuaid M Alzahrani S Alswat M
Full Access

Cranio-cervical connection is a well-established biomechanical concept. However, literature of this connection and its impact on cervical alignment is scarce. Chin incidence (CI) is defined as a complementary to the angle between chin tilt (CHT) and C2 slope (C2S) axes. This study aims to investigate the relationship between cervical sagittal alignment parameters and CI with its derivatives. A retrospective cross-sectional study carried out in a tertiary center. CT-neck radiographs of non-orthopedics patients were included. They had no history of spine related symptoms or fractures in cranium or pelvis. Images’ reports were reviewed to exclude those with tumors in the c-spine or anterior triangle of the neck. A total of 80 patients was included with 54% of them were males. The mean of age was 30.96± 6.03. Models of predictability for c2-c7 cobb's angle (CA) and C2-C7 sagittal vertical axis (SVA) using C2S, CHT, and CI were significant and consistent r20.585 (f(df3,76) =35.65, P ≤0.0001, r=0.764), r20.474 (f(df2,77) =32.98, P ≤0.0001, r=-0.550), respectively. In addition, several positive significant correlations were detected in our model in relation to sagittal alignment parameters. Nonetheless, models of predictability for CA and SVA in relation to neck tilt (NT), T1 slope (T1S) and thoracic inlet axis (TIA) were less consistent and had a significant marginally weaker attributable effect on CA, however, no significant effect was found on SVA r20.406 (f(df1,78) =53.39, P ≤0.0001, r=0.620), r20.070 (f(df3,76) =1.904, P 0.19), respectively. Also, this study shows that obesity and aging are linked to decreased CI which will result in increasing SVA and ultimately decreasing CA. CI model has a more valid attributable effect on the sagittal alignment in comparison to TIA model. Future investigations factoring this parameter might enlighten its linkage to many cervical spine diseases or post-op complications (i.e., trismus)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 55 - 55
1 Jan 2017
Rivière C Girerd D Ollivier M Argenson J Parratte S
Full Access

A principle of Total Knee Arthroplasty (TKA) is to achieve a neutral standing coronal alignment of the limb (Hip Knee Ankle (HKA) angle) to reduce risks of implant loosening, reduce polyethylene wear, and optimise patella tracking. Several long-term studies have questioned this because the relationship between alignment and implant survivorship is weaker than previously reported. We hypothesize standing HKA poorly predicts implant failure because it does not predict dynamic HKA, dynamic adduction moment, and loading of the knee during gait. Therefore, the aim of our study is to assess the relationship between the standing (or static) and the dynamic (gait activity) HKAs. We performed a prospective study on a cohort of 35 patients (35 knees) who were treated with a posterior-stabilized TKA for primary osteoarthritis between November 2012 and January 2013. Three months after surgery each patient had a standardized digital full-leg coronal radiographs and was classified as neutrally aligned TKA (17 patients), varus aligned (9 patients), and valgus aligned (4 patients). Patients then performed a gait analysis for level walking and dynamic HKA and adduction moment during the stance phase of gait were measured. We found standing HKA having a moderate correlation with the peak dynamic varus (r=0.318, p=0.001) and the mean and peak adduction moments (r=0.31 and r=-0.352 respectively). In contrast we did not find a significant correlation between standing HKA and the mean dynamic coronal alignment (r=0.14, p=0.449). No significant differences were found for dynamic frontal parameters (dynamic HKA and adduction moment) between patients defined as neutrally aligned or varus aligned. In our practice, the standing HKA after TKA was of little value to predict dynamic behaviour of the limb during gait. These results may explain why standing coronal alignment after TKA may have limited influence on long term implant fixation and wear


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 69 - 69
2 Jan 2024
Kvarda P Siegler L Burssens A Susdorf R Ruiz R Hintermann B
Full Access

Varus ankle osteoarthritis (OA) is typically associated with peritalar instability, which may result in altered subtalar joint position. This study aimed to determine the extent to which total ankle replacement (TAR) in varus ankle OA can restore the subtalar position alignment using 3-dimensional semi-automated measurements on WBCT. Fourteen patients (15 ankles, mean age 61) who underwent TAR for varus ankle OA were retrospectively analyzed using semi- automated measurements of the hindfoot based on pre-and postoperative weightbearing WBCT (WBCT) imaging. Eight 3-dimensional angular measurements were obtained to quantify the ankle and subtalar joint alignment. Twenty healthy individuals were served as a control groups and were used for reliability assessments. All ankle and hindfoot angles improved between preoperative and a minimum of 1 year (mean 2.1 years) postoperative and were statistically significant in 6 out of 8 angles (P<0.05). Values The post-op angles were in a similar range to as those of healthy controls were achieved in all measurements and did not demonstrated statistical difference (P>0.05). Our findings indicate that talus repositioning after TAR within the ankle mortise improves restores the subtalar position joint alignment within normal values. These data inform foot and ankle surgeons on the amount of correction at the level of the subtalar joint that can be expected after TAR. This may contribute to improved biomechanics of the hindfoot complex. However, future studies are required to implement these findings in surgical algorithms for TAR in prescence of hindfoot deformity


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 7 - 7
2 Jan 2024
Raes L Peiffer M Kvarda P Leenders T Audenaert EA Burssens A
Full Access

A medializing calcaneal osteotomy (MCO) is one of the key inframalleolar osteotomies to correct progressive collapsing foot deformity (PCFD). While many studies were able to determine the hind- and midfoot alignment after PCFD correction, the subtalar joint remained obscured by superposition on plain radiography. Therefore, we aimed to perform a 3D measurement assessment of the hind- and subtalar joint alignment pre- compared to post-operatively using weightbearing CT (WBCT) imaging. Fifteen patients with a mean age of 44,3 years (range 17-65yrs) were retrospectively analyzed in a pre-post study design. Inclusion criteria consisted of PCFD deformity correct by MCO and imaged by WBCT. Exclusion criteria were patients who had concomitant midfoot fusions or hindfoot coalitions. Image data were used to generate 3D models and compute the hindfoot - and talocalcaneal angle as well as distance maps. Pre-operative radiographic parameters of the hindfoot and subtalar joint alignment improved significantly relative to the post-operative position (HA, MA. Sa. , and MA. Co. ). The post-operative talus showed significant inversion, abduction, and dorsiflexion of the talus (2.79° ±1.72, 1.32° ±1.98, 2.11°±1.47) compared to the pre-operative position. The talus shifted significantly different from 0 in the posterior and superior direction (0.62mm ±0.52 and 0.35mm ±0.32). The distance between the talus and calcaneum at the sinus tarsi increased significantly (0.64mm ±0.44). This study found pre-dominantly changes in the sagittal, axial and coronal plane alignment of the subtalar joint, which corresponded to a decompression of the sinus tarsi. These findings demonstrate the amount of alternation in the subtalar joint alignment that can be expected after MCO. However, further studies are needed to determine at what stage a calcaneal lengthening osteotomy or corrective arthrodesis is indicated to obtain a higher degree of subtalar joint alignment correction


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 3 - 3
17 Apr 2023
Taylan O Shah D Dandois F Han W Neyens T Van Overschelde P Scheys L
Full Access

Mechanical alignment (MA) in total knee arthroplasty (TKA), although considered the gold standard, reportedly has up to 25% of patients expressing post-operative dissatisfaction. Biomechanical outcomes following kinematic alignment (KA) in TKA, developed to restore native joint alignment, remain unclear. Without a clear consensus for the optimal alignment strategy during TKA, the purpose of this study was to conduct a paired biomechanical comparison of MA and KA in TKA by experimentally quantifying joint laxity and medial collateral ligament (MCL) strain. 14 bilateral native fresh-frozen cadaveric lower limbs underwent medially-stabilised TKA (GMK Sphere, Medacta, Switzerland) using computed CT-based subject-specific guides, with KA and MA performed on left and right legs, respectively. Each specimen was subjected to sensor-controlled mediolateral laxity tests. A handheld force sensor (Mark-10, USA) was used to generate an abduction-adduction moment of 10Nm at the knee at fixed flexion angles (0°, 30°, 60°, 90°). A digital image correlation system was used to compute the strain on the superficial medial collateral ligament. A six-camera optical motion capture system (Vicon MX+, UK) was used to acquire kinematics using a pre-defined CT-based anatomical coordinate system. A linear mixed model and Tukey's posthoc test were performed to compare native, KA and MA conditions (p<0.05). Unlike MA, medial joint laxity in KA was similar to the native condition; however, no significant difference was found at any flexion angle (p>0.08). Likewise, KA was comparable with the native condition for lateral joint laxity, except at 30°, and no statistical difference was observed. Although joint laxity in MA seemed lower than the native condition, this difference was significant only for 30° flexion (p=0.01). Both KA and MA exhibited smaller MCL strain at 0° and 30°; however, all conditions were similar at 60° and 90°. Medial and lateral joint laxity seemed to have been restored better following KA than MA; however, KA did not outperform MA in MCL strain, especially after mid-flexion. Although this study provides only preliminary indications regarding the optimal alignment strategy to restore native kinematics following TKA, further research in postoperative joint biomechanics for load bearing conditions is warranted


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 56 - 56
1 Jan 2017
Belvedere C Ensini A Tamarri S Ortolani M Leardini A
Full Access

In total knee replacement (TKR), neutral mechanical alignment (NMA) is targeted in prosthetic component implantation. A novel implantation approach, referred to as kinematic alignment (KA), has been recently proposed (Eckhoff et al. 2005). This is based on the pre-arthritic lower limb alignment which is reconstructed using suitable image-based techniques, and is claimed to allow better soft-tissue balance (Eckhoff et al. 2005) and restoration of physiological joint function. Patient-specific instrumentation (PSI) introduced in TKR to execute personalized prosthesis component implantation are used for KA. The aim of this study was to report knee kinematics and electromyography (EMG) for a number lower limb muscles from two TKR patient groups, i.e. operated according to NMA via conventional instrumentation, or according to KA via PSI. 20 patients affected by primary gonarthrosis were implanted with a cruciate-retaining fixed-bearing prosthesis with patella resurfacing (Triathlon® by Stryker®, Kalamazoo, MI-USA). 17 of these patients, i.e. 11 operated targeting NMA (group A) via convention instrumentation and 6 targeting KA (group B) via PSI (ShapeMatch® by Stryker®, Kalamazoo, MI-USA), were assessed clinically using the International Knee Society Scoring (IKSS) System and biomechanically at 6-month follow-up. Knee kinematics during stair-climbing, chair-rising and extension-against-gravity was analysed by means of 3D video-fluoroscopy (CAT® Medical System, Monterotondo, Italy) synchronized with 4-channel EMG analysis (EMG Mate, Cometa®, Milan, Italy) of the main knee ad/abductor and flexor/extensor muscles. Knee joint motion was calculated in terms of flex/extension (FE), ad/abduction (AA), and internal/external rotation (IE), together with axial rotation of condyle contact point line (CLR). Postoperative knee and functional IKSS scores in group A were 78±20 and 80±23, worse than in group B, respectively 91±12 and 90±15. Knee motion patterns were much more consistent over patients in group B than A. In both groups, normal ranges were found for FE, IE and AA, the latter being generally smaller than 3°. Average IE ranges in the three motor tasks were respectively 8.2°±3.2°, 10.1°±3.9° and 7.9°±4.0° in group A, and 6.6°±4.0°, 10.5°±2.5° and 11.0°±3.9° in group B. Relevant CLRs were 8.2°±3.2°, 10.2°±3.7° and 8.8°±5.3° in group A, and 7.3°±3.5°, 12.6°±2.6° and 12.5°±4.2° in group B. EMG analysis revealed prolonged activation of the medial/lateral vasti muscles in group A. Such muscle co-contraction was not generally observed in all patients in group B, this perhaps proving more stability in the knee replaced following the KA approach. These results reveal that KA results in better function than NMA in TKR. Though small differences were observed between groups, the higher data consistency and the less prolonged muscle activations detected using KA support indirectly the claim of a more natural knee soft tissue balance. References


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 29 - 29
1 Mar 2021
Dalal S Aminake G Chandratreya A Kotwal R
Full Access

Abstract. Introduction. Long term survivorship in Total Knee Arthroplasty is significantly dependent on prosthesis alignment. The aim of this study was to determine, compare and analyse the coronal alignment of the tibial component of a single implant system using 3 different techniques. Method. Retrospective study of cases from a prospectively collected database. Radiological assessment included measurement of the coronal alignment of tibial components of total knee arthroplasties, and its deviation from the mechanical axis. A comparison study of intramedullary, extramedullary and tibial crest alignment methods was performed. Results. 66 consecutive patients (3 groups of 22 each). Mean BMI was 26. The mean angle of deviation from the mechanical axis was significantly lesser (p< 0.05) in the Tibial crest alignment group patients compared to the other 2 groups. Moreover, the number of outliers (+/-3 degrees) were 2 and 4 in the intra and extramedullary group, whereas there were none in the tibial crest group. The inter and intraclass correlation coefficient was 0.8 and 0.9 respectively. Conclusion. The Tibial Crest Alignment Technique is an effective technique to produce consistent results to achieve optimal coronal alignment of the tibial component in TKA, even in patients with high BMI. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 88 - 88
17 Apr 2023
Aljuaid M Alzahrani S Alzahrani A Filimban S Alghamdi N Alswat M
Full Access

Cervical spine facet tropism (CFT) defined as the facets’ joints angles difference between right and left sides of more than 7 degrees. This study aims to investigate the relationship between cervical sagittal alignment parameters and cervical spine facets’ tropism. A retrospective cross-sectional study carried out in a tertiary center where cervical spine magnetic resonance imaging (MRI) radiographs of patients in orthopedics/spine clincs were included. They had no history of spine fractures. Images’ reports were reviewed to exclude those with tumors in the c-spine. A total of 96 patients was included with 63% of them were females. The mean of age was 45.53± 12.82. C2-C7 cobb's angle (CA) and C2-C7 sagittal vertical axis (SVA) means were −2.85±10.68 and 1.51± 0.79, respectively. Facet tropism was found in 98% of the sample in at least one level on either axial or sagittal plane. Axial C 2–3 CFT and sagittal C4-5 were correlated with CA (r=0.246, P 0.043, r= −278, P 0.022), respectively. In addition, C2-C7 sagittal vertical axis (SVA) was moderately correlated with axial c2-3 FT (r= −0.330, P 0.006) Also, several significant correlations were detected in our model Cervical vertebral slopes and CFT at the related level. Nonetheless, high BMI was associated with multi-level and multiplane CFT with higher odd's ratios at the lower levels. This study shows that CFT at higher levels is correlated with increasing CA and decreasing SVA and at lower levels with decreasing CA. Obesity is a risk factor for CFT


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 12 - 12
17 Apr 2023
Van Oevelen A Burssens A Krähenbühl N Barg A Audenaert E Hintermann B Victor J
Full Access

Several emerging reports suggest an important involvement of the hindfoot alignment in the outcome of knee osteotomy. At present, studies lack a comprehensive overview. Therefore, we aimed to systematically review all biomechanical and clinical studies investigating the role of the hindfoot alignment in the setting of osteotomies around the knee. A systematic literature search was conducted on multiple databases combining “knee osteotomy” and “hindfoot/ankle alignment” search terms. Articles were screened and included according to the PRISMA guidelines. A quality assessment was conducted using the Quality Appraisal for Cadaveric Studies (QUACS) - and modified methodologic index for non-randomized studies (MINORS) scales. Three cadaveric, fourteen retrospective cohort and two case-control studies were eligible for review. Biomechanical hindfoot characteristics were positively affected (n=4), except in rigid subtalar joint (n=1) or talar tilt (n=1) deformity. Patient symptoms and/or radiographic alignment at the level of the hindfoot did also improve after knee osteotomy (n=13), except in case of a small pre-operative lateral distal tibia- and hip knee ankle (HKA) angulation or in case of a large HKA correction (>14.5°). Additionally, a pre-existent hindfoot deformity (>15.9°) was associated with undercorrection of lower limb alignment following knee osteotomy. The mean QUACS score was 61.3% (range: 46–69%) and mean MINORS score was 9.2 out of 16 (range 6–12) for non-comparative and 16.5 out of 24 (range 15–18) for comparative studies. Osteotomies performed to correct knee deformity have also an impact on biomechanical and clinical outcomes of the hindfoot. In general, these are reported to be beneficial, but several parameters were identified that are associated with newly onset – or deterioration of hindfoot symptoms following knee osteotomy. Further prospective studies are warranted to assess how diagnostic and therapeutic algorithms based on the identified criteria could be implemented to optimize the overall outcome of knee osteotomy. Remark: Aline Van Oevelen and Arne Burssens contributed equally to this work


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 4 - 4
1 Nov 2018
De Roos D Van den Bossche T Burssens A Victor J
Full Access

Patients with a hindfoot deformity impose a particular challenge when performing a total knee arthroplasty (TKA). This could be attributed to the lack of insights concerning the outcome towards the hindfoot alignment. Our objective was to perform a systematic review of the literature to investigate the influence of TKA on hindfoot alignment and vice-versa. In accordance with the Methodological Index For Non-Randomized Studies (MINORS) statement standards, we performed a systematic review. Electronic databases Pubmed, EMBASE, Web of Science, Google Scholar and Cochrane Library were searched to identify capable studies studying the influence between TKA and hindfoot malalignment. We indentified four prospective cohort studies, seven retrospective cohort studies and one case-control study. All twelve articles addressed the influence of TKA on hindfoot alignment. Seven out of nine studies which noticed an improvement of hindfoot alignment after TKA, found a significant improvement (p<0.05). Aditionally three of these studies reported a significant improvement only in valgus hindfeet (p<0.05). On the topic of hindfoot alignment influencing TKA, we identified two studies. These studies reported an impact of hindfoot alignment on the weightbearing and described that 87% of hindfeet remained in valgus alignment after TKA. Available data suggests that alignment in valgus hindfeet can improve after TKA, though long term results are not present. Contrary to last, improvement of hindfoot alignment is not expected in varus hindfeet. Furthermore hindfoot alignment deformity may cause a reduction of the long term survival of the knee prosthesis and therefore should be taken in to account


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 57 - 57
1 Mar 2021
Walker R Rye D Yoong A Waterson B Phillips J Toms A
Full Access

Abstract. Background. Lower limb mechanical axis has long been seen as a key to successful in lower limb surgery, including knee arthroplasty. Traditionally, coronal alignment has been assessed with weight-bearing lower limb radiographs (LLR) allowing assessment of hip-knee-ankle alignment. More recently CT scanograms (CTS) have been advocated as a possible alternative, having the potential benefits of being quicker, cheaper, requiring less specialist equipment and being non-weightbearing. Objectives. To evaluate the accuracy and comparability of lower limb alignment values derived from LLR versus CTS. Methods. We prospectively investigated patients undergoing knee arthroplasty with preoperative and postoperative LLR and CTS, analysing both preoperative and postoperative LLRs & CTS giving 140 imaging tests for direct comparison. We used two independent observers to calculate on each of imaging modalities, on both pre- and post-operative images, the: hip-knee-ankle alignment (HKA), lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA). Results. 840 data points were captured from pre- and post-operative LLRs and CTSs. Analysis demonstrated very strong correlation in pre-operative HKA (LLR vs CTS, r = 0.917), post-operative HKAs (LLR vs CTS, 0.850) and postoperative LDFAs (LLR vs CTS, 0.850). Strong correlation was observed in pre-operative LDFAs (0.732), MPTAs (0.604), and post-operative MPTAs (0.690). Conclusion. Both pre- and post-operative LLR and CTS imaging display very strong correlation for HKA coronal alignment correlation, with strong correlation for other associated angles around the knee. Our results demonstrate that both LLR and CTS can be used interchangeably with similar results. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 65 - 65
1 Jan 2017
Rivière C Iranpour F Cobb J Howell S Vendittoli P Parratte S
Full Access

The mechanical alignment (MA) for Total Knee Arthroplasty (TKA) with neutral alignment goal has had good overall long-term outcomes. In spite of improvements in implant designs and surgical tools aiming for better accuracy and reproducibility of surgical technique, functional outcomes of MA TKA have remained insufficient. Therefore, alternative, more anatomical options restoring part (adjusted MA (aMA) and adjusted kinematic alignment (aKA) techniques) or the entire constitutional frontal deformity (unicompartment knee arthroplasty (UKA) and kinematic alignment (KA) techniques) have been developed, with promising results. The kinematic alignment for TKA is a new and attractive surgical technique enabling a patient specific treatment. The growing evidence of the kinematic alignment mid-term effectiveness, safety and potential short falls are discussed in this paper. The current review describes the rationale and the evidence behind different surgical options for knee replacement, including current concepts in alignment in TKA. We also introduce two new classification systems for “implant alignments options” and “osteoarthritic knees” that would help surgeons to select the best surgical option for each patient. This would also be valuable for comparison between techniques in future research


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 39 - 39
1 Jan 2019
Williams D Metcalfe A Madete J Whatling G Kempshall P Forster M Holt C
Full Access

One of the main surgical goals when performing a total knee replacement (TKR) is to ensure the implants are properly aligned and correctly sized; however, understanding the effect of alignment and rotation on the biomechanics of the knee during functional activities is limited. Cardiff University has unique access to a group of local patients who have relatively high frequency of poor alignment, and early failure. This provides a rare insight into how malalignment of TKR's can affect patients from a clinical and biomechanical point of view to determine how to best align a TKR. This study aims to explore relationship clinical surgical measurements of Implant alignment with in-vivo joint kinematics. 28 patient volunteers (with 32 Kinemax (Stryker) TKR's were recruited. Patients undertook single plane video fluoroscopy of the knee during a step-up and step-down task to determine TKR in-vivo kinematics and centre of rotation (COR). Joint Track image registration software (University of Florida, USA) was used to match CAD models of the implant to the x-ray images. Hip-Knee-Ankle (HKA) was measured using long-leg radiographs to determine frontal plane alignment. Posterior tibial slope angle was calculated using radiographs. An independent sample t-test was used to explore differences between neutral (HKA:-2° to 2°), varus (≥2°) and valgus alignment (≤-2°) groups. Other measures were explored across the whole cohort using Pearson's correlations (SPSS V23). There was found to be no statistical difference between groups or correlations for HKA. The exploratory analysis found that tibial slope correlated with Superior/Inferior translation ROM during step up (r=−0.601, p<0.001) and step down (r=−.512, p=0.03) the position of the COR heading towards the lateral (r=−.479, p=0.006) during step down. Initial results suggest no relationship between frontal plane alignment and in-vivo. Exploratory analyses have found other relationships that are worthy of further research and may be important in optimizing function


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 31 - 31
1 Apr 2017
Meijer M Boerboom A Bulstra S Reininga I Stevens M
Full Access

Background. Achieving optimal prosthesis alignment during total knee arthroplasty (TKA) is essential. Imageless computer-assisted surgery (CAS) is developed to improve knee prosthesis alignment and with CAS it is possible to perform intraoperative alignment measurements. Lower limb alignment measurements are also performed for preoperative planning and postoperative evaluation. A new stereoradiography system, called EOS, can be used to perform these measurements in 3D and thus measurement errors due to malpositioning can be eliminated. Since both CAS and EOS are based on 3D modeling, measurements should theoretically correlate well. Therefore, objective was to compare intraoperative CAS-TKA measurements with pre- and postoperative EOS 3D measurements. Methods. In a prospective study 56 CAS-TKAs were performed and alignment measurements were recorded two times: before bone cuts were made and after implantation of the prosthesis. Pre- and postoperative coronal alignment measurements were performed using EOS 3D. CAS measurements were compared with EOS 3D reconstructions. Measured angles were: varus/valgus (VV), mechanical lateral distal-femoral (mLDFA) and medial proximal tibial angle (mMPTA). Results. Significantly different VV angles were measured pre- and postoperatively with CAS compared to EOS. For preoperative measurements, mLDFA did not differ significantly, but a significantly larger mMPTA in valgus was measured with CAS. Conclusions. EOS 3D measurements overestimate VV angle in lower limbs with substantial mechanical axis deviation. For lower limbs with minor mechanical axis deviation as well as for mMPTA measurements, CAS measures more valgus compared to EOS. Results of this study indicate that differences in alignment measurements between CAS measurements and pre- and postoperative EOS 3D are mainly due to the difference between weight bearing and non-weight bearing position and potential errors in validity and reliability of the CAS system. Surgeons should be aware of these measurement differences and the pitfalls of both measurement techniques. Level of evidence. IIb. Disclosures. The department of Orthopaedics, University of Groningen, University Medical Center Groningen receives research institutional support from InSpine (Schiedam, NL) and Stryker (Kalamazoo, Mich. USA). One of the authors (ALB) will be and has been paid as a consultant by Zimmer (Warsaw, IN, USA) for purposes of education and training in knee arthroplasty


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 91 - 91
1 Apr 2018
Chappell K McRobbie D Van Der Straeten C Ristic M Brujic D
Full Access

Purpose. Collagen-rich structures of the knee are prone to damage through acute injury or chronic “wear and tear”. Collagen becomes more disorganised in degenerative tissue e.g. osteoarthritis. An alignment index (AI) used to analyse orientation distribution of collagen-rich structures is presented. Method. A healthy caprine knee was scanned in a Siemens Verio 3T Scanner. The caprine knee was rotated and scanned in nine directions to the main magnetic field B. 0. A 3D PD SPACE sequence with isotropic 1×1×1mm voxels (TR1300ms, TE13ms, FOV256mm,) was optimised to allow for a greater angle-sensitive contrast. For each collagen-rich voxel the orientation vector is computed using Szeverenyi and Bydder's method. Each orientation vector reflects the net effect of all the fibres comprised within a voxel. The assembly of all unit vectors represents the fibre orientation map. Alignment Index (AI) in any direction is defined as a ratio of the fraction of orientations within 20° (solid angle) centred in that direction to the same fraction in a random (flat) case. In addition, AI is normalised in such a way that AI=0 indicates isotropic collagen alignment. Increasing AI values indicate increasingly aligned structures: AI=1 indicates that all collagen fibres are orientated within the cone of 20° centred at the selected direction. AI = (nM - nRnd)/(nTotal - nRnd) if nM >= nRnd. AI = 0 if nM < nRnd. Where:. nM is a number of reconstructed orientations that are within a cone of 20° centred in selected direction. nRnd is a number of random orientations within a cone of 20° around selected direction. nTotal is a number of collagen reach voxels. By computing AI for a regular gridded orientation space we are able to visualise change of AI on a hemisphere facilitating understanding of the collagen fibre orientation distribution. Results. The patella tendon had an AI=0.6453. The Anterior Cruciate Ligament (ACL) had an AI=0.2732. The meniscus had an AI=0.1847. Discussion. The most aligned knee structure is the patella tendon where the collagen fibres align with the skeleton to transmit forces through bones and muscles. This structure had the AI closest to 1. The ACL had the second highest AI and is composed of two fibre bundles aligned diagonally across the knee. The meniscus acts as a shock absorber and is made up of vertical, radial and circumferential fibres which disperse forces more equally. The complexity of the meniscal structure resulted in the lowest AI. To date, this technique has only been performed with healthy tissue; the AI may become closer to zero if there is damage disrupting the collagen fibre alignment. The AI can further our understanding of collagen orientation distribution and could be used as a quantitative, non-invasive measure of structural health


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 90 - 90
1 May 2017
Hevia E Solaz J Barrios C Caballero A Burgos J
Full Access

Background. Oblique implantable total disc replacements (TDR) have been developed in an attempt to partially resect the anterior longitudinal ligament (ALL), together with additional partial resection of lateral annulus fibres. To date, the literature has not addressed the impact of the TDR oblique implantation on the lumbar spine sagittal alignment. The hypothesis of this study was that TDR at the L4-L5 level does not change the sagittal alignment and the range of motion of the lumbar spine when the implant is placed in accurate position. Methods. Prospective single-center radiological investigation of L4/5 TDR inserted through an oblique approach for the treatment of disc disease. A series of 52 patients with a minimum of 2-year FU after oblique TDR at L4/L5 level was analysed for radiological changes in sagittal alignment and range of motion of the lumbar spine. The total sagittal lumbar lordosis (TSLL), the segmental sagittal lumbar lordosis (SSLL) of the operated level, and the range of motion of the TDR implant were determined in pre- and postoperative functional X-rays. The accuracy of the implant position was also evaluated. Results. A total of 52 patients (mean age, 42.7) were available. There were no revision surgeries for general and/or device-related complications. Only a 28.8% of cases (n=15) showed a satisfactory position. Off-center lateralised implants were the most common misplacements. Axial malrotated TDR accounted for the 28.1% of cases. From 3 to 24 months of FU, differences in range of motion were found in the total L1-S1 flexion, and in the mean range of motion of the implant both improving significantly. TDRs showing unsatisfactory implantation in the radiological studies (71.8%) demonstrated similar lumbar and segmental range of motion in comparison to properly implanted TDRs. Conclusions. Oblique implanted L4/L5 TDR significantly increases total lordosis while retaining segmental lordosis, independently of the accuracy of its intervertebral position. Oblique TDR maintains antero-posterior segmental and total balance in most cases. Further studies should evaluate whether this finding has any implication for the long-term outcome. Level of Evidence. Level III


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 14 - 14
1 Nov 2018
Demey P Vluggen E Burssens A Leenders T Buedts K Victor J
Full Access

Hindfoot disorders are complex 3D deformities. Current literature has assessed their influence on the full leg alignment, but the superposition of the hindfoot on plain radiographs resulted in different measurement errors. Therefore, the aim of this study is to assess the hindfoot alignment on Weight-Bearing CT (WBCT) and its influence on the radiographic Hip-Knee-Ankle (HKA) angle. A retrospective analysis was performed on a study population of 109 patients (mean age of 53 years ± 14,49) with a varus or valgus hindfoot deformity. The hindfoot angle (HA) was measured on the WBCT while the HKA angle, and the anatomical tibia axis angle towards the vertical (TA. X. ) were analysed on the Full Leg radiographs. The mean HA in the valgus hindfoot group was 9,19°±7.94, in the varus hindfoot group −7,29°±6.09. The mean TA. X. was 3,32°±2.17 in the group with a valgus hindfoot and 1,89°±2.63 in the group with a varus hindfoot, which showed to be statistically different (p<0.05). The mean HKA Angle was −1,35°±2.73 in the valgus hindfoot group and 0,4°±2.89 in the varus hindfoot group, which showed to be statistically different (p<0.05). This study demonstrates a higher varus in both the HKA and TA. X. in valgus hindfoot and a higher tibia valgus in varus hindfoot. This contradicts the previous assumption that a varus hindfoot is associated with a varus knee or vice versa. In clinical practice, these findings contribute to a better understanding of deformity corrections of both the hindfoot and the knee


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 53 - 53
1 Nov 2018
Karia M Ali A Harris S Abel R Cobb J
Full Access

Tibial bone density may affect implant stability and functional outcomes following total knee replacement (TKR). Our aim was to characterise the bone density profile at the implant-tibia interface following TKR in mechanical versus kinematic alignment. Pre-operative computed tomography scans for 10 patients were obtained. Using surgical planning software, tibial cuts were made for TKR either neutral (mechanical) or 3 degrees varus (kinematic) alignment. Signal intensity, in Hounsfield Units (HU), was measured at 25,600 points throughout an axial slice at the implant-tibia interface and density profiles compared along defined radial axes from the centre of the tibia towards the cortices. From the tibial centre towards the lateral cortex, trabecular bone density for kinematic and mechanical TKR are similar in the inner 50% but differ significantly beyond this (p= 0.012). There were two distinct density peaks, with peak trabecular bone density being higher in kinematic TKR (p<0.001) and peak cortical bone density being higher in mechanical TKR (p<0.01). The difference in peak cortical to peak trabecular signal was 43 HU and 185 HU respectively (p<0.001). On the medial side there was no significant difference in density profile and a linear increase from centre to cortex. In the lateral proximal tibia, peak cortical and peak trabecular bone densities differ between kinematic TKR and mechanical TKR. Laterally, mechanical TKR may be more dependent upon cortical bone for support compared to kinematic TKR, where trabecular bone density is higher. This may have implications for surgical planning and implant design


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 39 - 39
1 Jun 2012
Clarke J Deakin A Picard F Riches P
Full Access

Knee alignment is a fundamental measurement in the assessment, monitoring and surgical management of patients with OA. In spite of extensive research into the consequences of malalignment, there is a lack of data regarding the potential variation between supine and standing (functional) conditions. The purpose of this study was to explore this relationship in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different. Infrared position capture was used to assess knee alignment for 30 asymptomatic controls and 31 patients with OA, before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values varus/hyperextension) were measured supine and in bi-pedal stance and changes analysed using a paired t-test. To quantify this change in 3D, vector plots of ankle centre displacement relative to the knee centre were produced. Alignment in both planes changed significantly from supine to standing for all three groups, most frequently towards relative varus and extension. In the coronal plane, the mean±SD(°) of the supine/standing MFT angles was 0.1±2.5/−1.1±3.7 for asymptomatic (p=0.001), −2.5±5.7/−3.6±6.0 for osteoarthritic (p=0.009) and −0.7±1.4/ −2.5±2.0 for prosthetic knees (p<0.001). In the sagittal plane, the mean±SD(°) of the supine/standing MFT angles was −1.7±3.3/−5.5±4.9 for asymptomatic (p<0.001), 7.7±7.1/1.8±7.7 for osteoarthritic (p<0.001) and 6.8±5.1/1.4±7.6 for prosthetic knees (p<0.001). The vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the groups. The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. This potential change should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different