Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 90 - 90
1 Apr 2018
Van Der Straeten C Auvinet E Cameron-Blackie A
Full Access

INTRODUCTION. Osteoarthritis (OA) is a growing societal burden, due to the ageing population. Less invasive, less damaging, and cheaper methods for diagnosis are needed, and sound technology is an emerging tool in this field. AIMS. The aim of the current research was to: 1) investigate the potential of visual scalogram analysis of Acoustic Emission (AE) frequencies within the human audible range (20–20000 Hz) to diagnose knee OA, 2) correlate the qualitative visual scalogram analysis of the AE with OA symptoms, and 3) to do this based on information gathered during gait. METHODS. The analysis was carried out on a database collected during a prospective sound study on healthy and osteoarthritic knees. Sound recordings obtained with a contact microphone mounted on the patella and attached to a digital pre-amplifier, whilst patients were walking on a treadmill, were visualised, manually sampled, and transformed into scalograms. Features of the scalograms were described and qualitatively analysed through chi-squared tests for association with healthy or OA knees (knee status), and with severity of OA pain and functional symptoms and impact on quality of life (QoL), activities of daily living (ADL) and sports using the Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales. RESULTS. 28 patients (56 knees) were included in the analysis. Our method provides a wide variety of different scalogram features: if no events were recorded, the scalogram was classified as “quiet” (Fig 1). In case of abnormal recordings, data analysis evaluated association with the total count of the three most common events that appeared: 1. Peak (Fig 2), 2. Scattered (Fig 3) or 3. Island (localized noise but not presenting as a peak) (Fig 4) – “scalogram features”. No association was found between global scalogram characteristics (quiet versus “any noise”) and knee status (healthy or OA) (χ. 2. =3.163, p=0.075), but was found between knee status and three specific scalogram features (χ. 2. =9.743, p=0.008). The strongest association was a higher frequency of the “scattered” feature in the OA group (χ. 2. =9.06, p=0.01). Scalogram characteristics had no significant association with the sports and recreation (χ. 2. =1.74, p=0.419) nor the activities of daily living (χ. 2. =1.80, p=0.406) KOOS subscales. Significant association was found between scalogram characteristic and the pain (χ. 2. =10.34, p=0.006), quality of life (χ. 2. =6.58, p=0.037), and symptoms (χ. 2. =7.54, p=0.023) subscales. CONCLUSION. Promising results from analysis of individual features and of KOOS subscales establish the potential of acoustic analysis in evaluation of OA knees. More analysis of the data is needed to better define the variety of scalogram features. The future consequences of this research would be the development of a fast and affordable, non-invasive, radiation-free and potentially portable approach to evaluation, diagnosis and longitudinal monitoring of knee disorders


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 33 - 33
1 Apr 2018
Van Der Straeten C Cameron-Blackie A Auvinet E
Full Access

INTRODUCTION. Osteoarthritis (OA) is a growing societal burden, due to the ageing population. Less invasive, less damaging, and cheaper methods for diagnosis are needed, and sound technology is an emerging tool in this field. Some studies investigate ultrasound signals, while others look at acoustic signals in the audible range. AIMS. The aim of the current research was to: 1) investigate the potential of visual scalogram analysis of Acoustic Emission (AE) frequencies within the human audible range (20–20000 Hz) to diagnose knee OA, 2) correlate the qualitative visual scalogram analysis of the AE with OA symptoms, and 3) to do this based on information gathered during gait. METHODS. The analysis was carried out on a database collected during a prospective sound study on healthy and osteoarthritic knees. Sound recordings obtained with a contact microphone mounted on the patella and attached to a digital pre-amplifier, whilst patients were walking on a treadmill, were visualised, manually sampled, and transformed into scalograms. Features of the scalograms were described and qualitatively analysed through chi-squared tests for association with healthy or OA knees (knee status), and with severity of OA pain and functional symptoms and impact on quality of life (QoL), activities of daily living (ADL) and sports using the Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales. RESULTS. 28 patients (56 knees) were included in the analysis. Our method provides a wide variety of different scalogram features: if no events were recorded, the scalogram was classified as ‘quiet’ (Fig 1). In case of abnormal recordings, data analysis evaluated association with the total count of the three most common events that appeared: 1. Peak (Fig 2), 2. Scattered (Fig 3) or 3. Island (localized noise but not presenting as a peak) (Fig 4) – “scalogram features”. No association was found between global scalogram characteristics (quiet versus ‘any noise’) and knee status (healthy or OA) (χ. 2. =3.163, p=0.075), but was found between knee status and three specific scalogram features (χ. 2. =9.743, p=0.008). The strongest association was a higher frequency of the “scattered” feature in the OA group (χ. 2. =9.06, p=0.01). Scalogram characteristics had no significant association with the sports and recreation (χ. 2. =1.74, p=0.419) nor the activities of daily living (χ. 2. =1.80, p=0.406) KOOS subscales. Significant association was found between scalogram characteristic and the pain (χ. 2. =10.34, p=0.006), quality of life (χ. 2. =6.58, p=0.037), and symptoms (χ. 2. =7.54, p=0.023) subscales. CONCLUSION. Promising results from analysis of individual features and of KOOS subscales establish the potential of acoustic analysis in evaluation of OA knees. More analysis of the data is needed to better define the variety of scalogram features. The future consequences of this research would be the development of a fast and affordable, non-invasive, radiation-free and potentially portable approach to evaluation, diagnosis and longitudinal monitoring of knee disorders. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 238 - 238
1 Jun 2012
Tamaki T
Full Access

Background

We have often experienced a change of the tone of the hammering sound during the press-fit implantation of cementless acetabular components in total hip arthroplasty (THA). The tone of the impact sound before the press-fit of acetabular components seems to differ from the tone after the press-fit. This change of tone may depend on the accuracy of the fit of the acetabular component, or it may simply be a subjective perception. The aim of this study is to evaluate the impact sounds in the press-fit implantation of cementless acetabular components.

Methods

The hammering sounds in press-fit implantation of acetabular components were studied intraoperatively in 22 patients (28 hips) who underwent primary THA for treatment of advanced osteoarthritis. All operations were performed via the direct anterior approach in a supine position. The hemispherical titanium-alloy acetabular component (TriAD; stryker) was implanted in all patients. A sound level meter (NA-28; RION) was used to record and analyze the sounds. The hammering sounds of the first three hits and last three hits were recorded as the “before press-fit” and “after press-fit” sound samples, respectively. A frequency analysis was then performed at the point of peak sound pressure in each sample.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 154 - 161
1 Mar 2024
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 154 - 161
28 Mar 2023
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 104 - 104
1 Mar 2010
Walter WL Gillies M Donohoo S Sexton SA Hozack WJ Ranawat AS
Full Access

Squeaking in ceramic on ceramic bearing total hip arthroplasty is well documented but its aetiology is poorly understood. In this study we have undertaken an acoustic analysis of the squeaking sound recorded from 31 ceramic on ceramic bearing hips. The frequencies of these sounds were compared with in vitro acoustic analysis of the component parts of the total hip implant. Analysis of the sounds produced by squeaking hip replacements and comparison of the frequencies of these sounds with the natural frequency of the component parts of the hip replacements indicates that the squeaking sound is due to a friction driven forced vibration resulting in resonance of one or both of the metal components of the implant. Finite element analysis of edge loading of the prostheses shows that there is a stiffness incompatibility between the acetabular shell and the liner. The shell tends to deform, uncoupling the shell-liner taper system. As a result the liner tends to tilt out of the acetabular shell and slide against the acetabular shell adjacent to the applied load. The amount of sliding varied from 4–40μm. In vitro acoustic and finite element analysis of the component parts of a total hip replacement compared with in vivo acoustic analysis of squeaking hips indicate that either the acetabular shell or the femoral stem can act as an “oscillator’ in a forced vibration system and thus emit a squeak. Introduction: Squeaking has long been recognized as a complication in hip arthroplasty. It was first reported in the Judet acrylic hemiarthroplasty. 1. It was the squeak of a Judet prosthesis that led John Charnley to investigate friction and lubrication of normal and artificial joints which ultimately led to the concept of low friction arthroplasty. Ceramic on ceramic bearings were pioneered by Boutin in France during the 1970’s, but experienced unacceptably high fracture rates. Charnley demonstrated in vitro squeaking when he tested one of Boutin’s ceramic-on-ceramic bearings in his pendulum friction comparator. 2. Squeaking has also been reported in other hard on hard bearings, and can also occur after polyethylene bearing surface failure resulting in articulation between metal on metal or ceramic on metal surfaces. 3–6. Recently, squeaking has been increasingly reported in modern ceramic-on-ceramic bearings in hip arthroplasty. However, although well-documented, the aetiology of squeaking in ceramic on ceramic bearings is still poorly understood. The incidence ranges from under 1% to 10%. 7–10. It has been reported in mismatched ceramic couples,11and after ceramic liner fracture. 12,13. An increased risk of squeaking has been demonstrated with acetabular component malposition, as well as in younger, heavier and taller patients. 9. However, it may also occur in properly matched ceramic bearings with ideal acetabular component position and in the absence of neck to rim impingement. 7–9. In rare cases, the squeak is not tolerated by the patient and has prompted a revision. Under ideal conditions hard-on-hard bearings are assumed to be operating under conditions of fluid film lubrication with very low friction. 14,15. However, if fluid film lubrication breaks down leading to dry sliding contact there will be a dramatic increase in friction. If this increased friction provides more energy to the system than it can dissipate, instabilities may develop in the form of friction induced vibrations and sound radiation. 16. Friction induced vibrations are a special case of forced vibration, where the frequency of the resulting vibration is determined by the natural frequency of the component parts. Running a moistened finger around the rim of a wine glass is an example of this. [Appendix]. The hypothesis of this study is that the squeaking sound that occurs in ceramic on ceramic hip replacement is the result of a forced vibration. This forced vibration can be broken down into a driving force and a resultant dynamic response. 17. The driving force is a frictional driving force and occurs when there is a loss of fluid film lubrication resulting in a high friction force. 14,15,18. The dynamic response is a vibration of a part of the device (the oscillator) at a frequency that is influenced by the natural frequency of the part. 16. By analyzing the frequencies of the sound produced by squeaking hip replacements and comparing them to the natural frequency of the component parts of a hip replacement this study aims to determine which part produces the sound. Materials and methods: In vitro determination of the natural frequencies of implant components Modal analysis has suggested that resonance of the ceramic components would occur only at frequencies above the human audible range and that resonance of the metal parts would occur at frequencies within the human audible range. Furthermore, that resonance of the combined ceramic insert and titanium shell would not be within the human audible range. To test this hypothesis we performed a simple acoustic analysis. The natural frequency of hip replacement components was determined experimentally using an impulse-excitation method (Grindo-sonic). Components were placed on a soft foam mat in a quiet environment and struck with a wooden mallet. The sound emitted from the component was recorded on a personal computer with an external microphone with a frequency response which ranges from 50Hz to 18,000Hz (Beyerdynamic MCE87, Heilbronn, Ger-many). The computer has an integrated sound card with a frequency response from 20Hz to 24kHz (SoundMAX integrated digital audio chip, Analogue Devices Inc, Norwood, M.A.) and we used a codec with a frequency response from 20Hz to 20kHz (Audio Codec ’97, Intel, Santa Clara, CA). Sound files were captured as 16 bit mono files at a sample rate of 48000Hz using acoustic analysis software (Adobe Audition 1.5, Adobe Systems Incorporated, San Jose, California, USA). We performed fast Fourier transform (FFT) of the sound using FFT size 1024 with a Blackmann-Harris window to detect the frequency components of the emitted sound. (Fast Fourier transform is an accepted and efficient algorithm which enables construction of a frequency spectrum of digitized sound). We tested the following components: modular ceramic/titanium acetabular components, which included testing the titanium shell and the respective ceramic inserts both assembled according to the manufacturer’s instructions and unassembled; titanium femoral stems and ceramic femoral heads both assembled and unassembled. A range of sizes of each component was tested according to availability from our retrieval collection. In vivo acoustic analysis: Sound recordings were collected from 31 patients. Nineteen recordings were made at our institution: 16 of these were video and audio recordings and 3 were audio only recordings. Video recording was with a digital video camera recorder (Sony DCR-DVD101E Sony Electronics, San Diego, CA, USA) with the same external microphone used in the in vitro analysis. For 3 patients who could not reproduce the sound in the office we lent them a digital sound recorder for them to take home and record the sound when it occurred (Sony ICD-MX20, Sony Electronics, San Diego, CA, USA). This device has a In vivo acoustic frequency range from 60Hz to 13,500Hz. The remainder of the recordings were video and audio recordings made by surgeons at three other institutions on digital video camera recorders. Sound files were captured and analyzed by the same method used in the in vitro analysis. Each recording was previewed in the spectral view mode which allows easy visual identification of the squeak in the sound recording. In addition all sound recordings were played, listening for the squeak. Once a squeak was identified a fast Fourier transform (FFT) was performed. We used FFT size 1024 with a Blackmann-Harris window which allowed us to easily pick out the major frequency components. All prominent frequency components were recorded at the beginning of the squeak and at several time points during the squeak if there was any change. A range was recorded for the fundamental frequency component. We were able to determine the frequency range of the recording device used by observing the frequency range of the background noise on the recording. We found that if a squeak was audible on the recording we had no difficulty determining its frequency regardless of the quality of the device used to make the recording or the amount of background noise. The mean age of the patients was 54 years (23 to 79 years), mean height was 171cm (152 to 186cm) and mean weight was 79kg (52 to 111kg). There were 17 female and 14 male patients. There were nineteen ABGII stem and ABGII cup combinations, 10 accolade stem and trident cup, 1 Exeter stem and trident cup and 1 Osteonics Securfit stem with an Osteonics cup. Ethics committee approval was obtained for this project from our institution and from the referring institutions and informed consent was gained from the patients. Finite element analysis of edge loading: Edge-loading wear which may provide a mechanism for failure of fluid film lubrication and may therefore play a role in squeaking. To evaluate edge loading further we conducted finite-element analysis (FEA). 9. Computed tomography (CT) scans of an intact pelvis were obtained from visual human data set (VHD, NLM, Bethesda, Maryland). Slices were taken at 1mm thick with no inter-slice distance through the entire pelvis. The CT files were then read into a contour extraction program and saved into an IGES file format which was imported into PATRAN (MSC Software, Los Angeles, CA) to develop the pelvic geometry. The pelvis was meshed with 10 noded modified tetrahedral elements. The model was reconstructed with a 54mm titanium alloy generic acetabular shell and a 28mm alumina ceramic liner. The acetabular shell and ceramic liner were meshed using 8 noded hexahedral elements. The shell-liner modular taper junction incorporated an 18° angle. The implant contact conditions (Lagrangian multiplier) allowed the liner and shell to slide with a friction coefficient of 0.9. Tied contact conditions were applied between the generic acetabular shell and the bone representing bone ongrowth. Bone material properties were extracted from the CT files by taking the Hounsfield value and the coordinates and mapping to the element in the model allowing us to calculate the Young’s modulus for each element . 19. Material properties for the shell and liner were based on published values. 20. for titanium alloy and alumina ceramic


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 380 - 380
1 Jul 2011
Deo S Horne G Howick E Devane P
Full Access

Acoustic emission is an uncommon but well-recognised phenomenon following total-hip arthroplasty using hard-on-hard bearing surfaces. The incidence of squeak has been reported between 1% – 10%. The squeak can be problematic enough to warrant revision surgery. Several theories have been proposed, but the cause of squeak remains unknown. Acoustic analysis shows squeak results from forced vibrations that may come from movement between the liner and shell. A potential cause for this movement is deformation of the shell during insertion. 6 cadaver hemipelvises were prepared to accept ace-tabular components. A shell was selected and pre-insertion the inner shape was measured using a profilometer. The shell was implanted and re-measured. 2x screws were then placed and the shells re-measured. The results were assessed for deformation. Deformation of the shells occurred in 5 of the 6 hemi-pelvises following insertion. The hemipelvis of the non-deformed shell fractured during insertion. Following screw insertion no further shell deformation occurred. The deformation was beyond the acceptable standards of a morse taper which may allow movement between components, and this may produce an acoustic emission. Further in-vitro testing is being conducted to see whether shell deformation allows movement producing an acoustic emission


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 168 - 168
1 Mar 2010
Walter WL Waters TS Gillies RM Donohoo SM Hozack WJ Kurtz SM
Full Access

Squeaking in hip arthroplasty is now well-documented but hitherto poorly understood. In this paper, we report data progressively accumulated from a series of studies undertaken by our group to investigate the mechanisms of noise production associated with ceramic-on-ceramic bearings. We reviewed demographic and radiographic data comparing squeaking with silent hips. Edge loading of the acetabular components was investigated on retrieved bearings and with finite element analysis. The squeaking sound itself was further investigated through acoustic analysis. Squeaking occurs in younger, heavier, and taller patients. We found a higher incidence of acetabular component malposition in squeaking hips and edge loading appears to be a causative factor. Finite element analysis revealed a stiffness mismatch between the shell and liner which may allow the shell to oscillate producing an audible squeak. Acoustic and modal analysis show that squeaking is due to a forced vibration and that the natural frequencies of the ceramic components are above the audible range, suggesting that resonance occurs in the metallic, not the ceramic parts. This phenomenon is related to patient factors, surgical factors, and implant factors, which may produce sound by a combination of edge loading of the ceramic and forced vibration of the acetabular shell and/or the femoral stem


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 89 - 89
1 Mar 2009
Gillies R Donohoo S Walter W
Full Access

Introduction: Squeaking is reported ceramic-on-ceramic hip bearings in association with acetabular component malposition – particularly too much or too little anteversion. Acoustic analysis of squeaking hips with modular ceramic-titanium acetabular components suggests that there may be dynamic uncoupling of the ceramic insert from the titanium shell with edge loading of the ceramic. The aim of this study was to investigate edge loading of a modular ceramic-titanium acetabular component during gait at different positions of anteversion using the finite element (FE) method. Methods: An intact and reconstructed 3D FE model of a human pelvis was generated using PATRAN. Bone properties extracted from the CT data were applied using FORTRAN subroutines. A generic acetabular titanium shell and ceramic liner were modelled and placed in the pelvis in two different positions: ideal anteversion and 18 degree excess anteversion. The contact conditions simulated a fully osseointegrated acetabular shell and a matched taper junction with a friction coefficient of 0.2. We ran FE analysis with ABAQUS software to determine the stress distribution and surface separation of shell and liner at toe-off. Results: The separation distance between the ceramic liner and the acetabular shell for the anteverted component (40mm) was an order of magnitude greater than that for the ideally positioned component (4mm). There was “tilting” of the ceramic liner out of the acetabular shell in both cases. Discussion: Based on clinical observations, the toe-of phase of gait is a common position for squeaking to occur. Clinical retrievals also show evidence of edge loading wear and contralateral taper interface separation with the “tilting” of the liner out of the acetabular shell. It is envisaged that the “tilting” of the liner in the acetabular shell may allow forced vibrations associated with the squeaking phenomena, possibly in combination with edge loading


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 452 - 453
1 Nov 2011
Schwarzkopf R Kummer F Jaffee W
Full Access

The analysis of hip joint vibrations (phonoarthrography, vibration arthrometry, vibroarthrography, hip auscultation) has been explored as a means to assess joint pathologies, disease status and recently, incipient prosthesis failure. Frequencies < 100Hz have been used to diagnose gross pathology and wear in knee prostheses, frequencies from 1k to 10k Hz for progression of osteoarthritis, and frequencies > 10k Hz for loosening of cemented hip prostheses. It is possible that detailed analysis of higher frequencies could detect and quantify the smaller geometric changes (asperities) that develop in articular prosthetic wear. We examined the ultrasound emission generated by various types of hip prostheses and native hips of 98 patients. The ultrasonic transducer was attached to the skin over the greater trochanter with a hypoallergenic, transparent dressing using a standard acoustic coupling gel layer on the microphone face to improve skin contact. The transducer was attached by a 2m cord to a battery operated, data recorder/logger. The patients were asked to sit in a chair, rise, sit again and then rise and take 5 steps while recording the acoustic data from these two movements of sitting and walking. This procedure was repeated for the opposite hip in each patient as well. Acoustic emission analysis examined frequency distributions and power spectrums of the recorded signals and their relations to prosthesis type and implantation time. Review of x-rays of prosthetic and native hips was carried out with OA grading and prosthetic wear quantification. We have obtained data on 79 metal-polyethylene (average duration of 8.5 years; 0.1–28), 20 ceramic-ceramic (average duration of 8.5 years; 0.5–10), 17 metal-metal (average duration of 1.2 years; 0.1–5.5) and 15 ceramic-polyethylene (average duration of 0.6 years; 0.1–1) hip arthroplasties as well as 75 native hips. Analysis of the data enabled us to tell the difference between patients whose native hips did not cause them any discomfort and those patients with painful osteoarthritis (initial findings indicate that OA severity can be quantified as well). The measurements of wear of the metal-polyethylene prostheses obtained from patients’ x-rays were compared to an analysis of the ultrasonic emissions, a homogeneity showed no significant differences (all p’s > 0.24) between the curve type and amount of wear of the prosthesis polyethylene. Our data suggests that we are capable of assessing the status of OA by acoustic emission. Further analysis of wear data coupled to ultrasonic emission is needed for accurate quantification of THA wear