Advertisement for orthosearch.org.uk
Results 1 - 20 of 90
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 26 - 26
1 Jan 2018
MacDonald S Howard J Goyal P Yuan X Lanting B Teeter M Naudie D McCalden R
Full Access

Lewinnek's safe zone recommendation to minimise dislocations was a target of 5–25° for anteversion angle and 30–50° for inclination angle. Subsequently, it was demonstrated that mal-positioning of the acetabular cup can also lead to edge loading, liner fracture, and greater conventional polyethylene wear. The purpose of this study was to measure the effect of acetabular cup position on highly crosslinked polyethylene wear in total hip arthroplasty (THA) at long-term follow-up. We identified all patients that underwent primary THA with a minimum of 10 years follow-up using an institutional database in London, Ontario, Canada. Patients with a single implant design consisting of a 28 mm cobalt chromium head and highly crosslinked polyethylene liner (ram extruded, GUR 1050, 100 kGy gamma irradiated, remelted, ethylene oxide sterilised) were selected for inclusion. In total, 85 hips from 79 recruited patients were analysed. Patients underwent a supine radiostereometric analysis (RSA) exam in which the x-ray sources and detectors were positioned to obtain an anterior-posterior and cross-table lateral radiograph. Acetabular cup anteversion angle, inclination angle, and 3D penetration rate (including wear and creep) were measured from the stereo radiograph pairs. At a mean follow-up of 13 years (range, 10–17 years) the mean penetration rate was 0.059 mm/year (95% CI: 0.045 to 0.073 mm/year). Mean anteversion angle was 18.2° (range, −14 to 40°) and mean inclination angle was 43.6° (range, 27 to 61°). With respect to the Lewinnek safe zone, 67% hips met the target for anteversion angle, 77% met the target for inclination angle, and 51% met the target for both. There was no correlation between anteversion angle and penetration rate (r = −0.14, p = 0.72) or between inclination angle and penetration rate (r = 0.11, p = 0.35). There was also no difference (p = 0.07) in penetration rate between hips located within the Lewinnek safe zone for both anteversion angle and inclination angle (mean 0.057 mm/year, 95% CI: 0.036 to 0.079 mm/year) and those outside the safe zone (mean 0.062 mm/year, 95% CI: 0.042 to 0.083 mm/year). Acetabular cup position had no effect on the wear rate of highly crosslinked polyethylene at long-term follow-up. Although care should still be taken to correctly position the acetabular cup for stability, highly crosslinked polyethylene is a forgiving bearing material that can withstand a wide range of cup positions without negatively impacting longevity due to wear


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 641 - 646
1 Jul 2002
Lai K Shen W Chen C Yang C Hu W Chang G

Between March 1990 and May 1991 we performed 85 primary total hip replacements in 74 patients using the Landos Atoll hydroxyapatite (HA)-coated cup and the Corail HA-coated stem. The patients were followed up for a mean of ten years. Of the 85 cups, 26 (31%) have already been revised and a further six are radiologically unstable and awaiting revision. Two femoral stems have been revised for infection without loosening. The retrieved acetabular cups were studied by SEM and image-processing techniques to quantify the amount of residual HA on the cup. This was correlated with the clinical variables and modes of failure. The residual HA (as a percentage of the surface) on the loose cups correlated negatively with the duration of implantation (r = −0.732, p < 0.001). Six cups were stable at revision and had more residual HA coating than those which were loose (p < 0.01). The rate of failure of the Landos Atoll HA-coated, smooth hemispherical cup with screw fixation is unacceptably high. Resorption of the HA coating is markedly increased in loose cups compared with stable cups. HA coating cannot substitute for stable mechanical fixation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 40 - 40
1 Oct 2018
Faizan A Scholl L Zhang J Ries MD
Full Access

Introduction. Iliopsoas tendonitis after total hip arthroplasty (THA) can be a considerable cause of pain and patient dissatisfaction. The optimal cup position to avoid iliopsoas tendonitis has not been clearly established. Implant designs have also been developed with an anterior recess to avoid iliopsoas impingement. The purpose of this cadaveric study was to determine the effect of cup position and implant design on iliopsoas impingement. Materials. Bilateral THA was performed on three fresh frozen cadavers using oversized (jumbo) offset head center revision acetabular cups with an anterior recess (60, 62 and 66 mm diameter) and tapered wedge primary stems through a posterior approach. The relatively large shell sizes were chosen to simulate THA revision cases. At least one fixation screw was used with each shell. A 2mm diameter flexible stainless steel cable was inserted into the psoas tendon sheath between the muscle and the surrounding membrane to identify the location of the psoas muscle radiographically. Following the procedure, CT scans were performed on each cadaver. The CT images were imported in an imaging software for further analysis. The acetabular shells, cables as well as pelvis were segmented to create separate solid models of each. To compare the offset head center shell to a conventional hemispherical shell in the same orientation, the offset head center shell was virtually replaced with an equivalent diameter hemispherical shell by overlaying the outer shell surfaces of both designs and keeping the faces of shells parallel. enabled us to assess the relationship between the conventional shells and the cable. The shortest distance between each shell and cable was measured. To determine the influence of cup inclination and anteversion on psoas impingement, we virtually varied the inclination (30°/40°/50°) and anteversion (10°/20°/30°) angles for both shell designs. Results. The CT analysis revealed that the original orientation (inclination/anteversion) of the shells implanted in 3 cadavers were as follows: Left1: 44.7°/23.3°; Right1: 41.7°/33.8°; Left2: 40.0/17; Right2: 31.7/23.5; Left3: 33.0/2908; Right3: 46.7/6.3. For the offset center shells, the shell to cable distance in all the above cases were positive indicating that there was clearance between the shells and psoas. For the hemispherical shells, in 3 out of 6 cases, the distance was negative indicating impingement of psoas. With the virtual implantation of both shell designs at orientations 40°/10°, 40°/20°, 40°/30° we found that greater anteversion helped decrease psoas impingement in both shell designs. When we analyzed the influence of inclination angle on psoas impingement by comparing wire distances for three orientations (30°/20°, 40°/20°, 50°/20°), we found that the effect was less pronounced. Further analysis comparing the offset head center shell to the conventional hemispherical shell revealed that the offset design was favored (greater clearance between the shell and the wire) in 17 out of 18 cases when the effect of anteversion was considered and in 15 out of 18 cases when the effect of inclinations was considered. Discussion. Our results indicate that psoas impingement is related to both cup position and implant geometry. For an oversized jumbo cup, psoas impingement is reduced by greater anteversion while cup inclination has little effect. An offset head center cup with an anterior recess was effective in reducing psoas impingement in comparison to a conventional hemispherical geometry. In conclusion, adequate anteversion is important to avoid psoas impingement with jumbo acetabular shells and an implant with an anterior recess may further mitigate the risk of psoas impingement


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 48 - 53
1 Jan 1998
Ioannidis TT Zacharakis N Magnissalis EA Eliades G Hartofilakidis G

We report the long-term radiological results of 58 total hip arthroplasties (THA) using the Charnley offset-bore acetabular socket. Wear was measured at four sites and radiolucent lines and possible migration were recorded. Four cups were retrieved at revision and were examined using light microscopy, SEM and X-ray microanalysis. At a mean follow-up of seven years the mean wear in the DeLee and Charnley zone I was 0.4 mm and in zone II 0.26 mm. The wear rate was 0.06 and 0.04 mm/year, respectively. Progression of radiolucent lines was seen in five cases (8.6%). Three sockets (5.2%) were revised because of aseptic migration at a mean follow-up of 9.8 years and one socket for infection at two years. The offset-bore acetabular cup had excellent wear behaviour and a low migration and revision rate. We recommend that it should be considered in THA since the use of small cups is increasing, particularly in revision cases


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 60 - 60
19 Aug 2024
Lau LCM Cheung MH Ng FY Fu H Chan PK Chiu P
Full Access

In total hip arthroplasty (THA), cementless cup without screw holes has the putative benefits of maximizing host bone contact and reducing osteolysis by eliminating channels to backside wear particles. However, supplemental trans-acetabular screws cannot be used.

74 hips in 60 patients receiving same model of cementless cup without screw holes (Depuy Duraloc 100 HA cup) from 6/1999 to 3/2003 were prospectively followed up. All patients were allowed to have immediate full weight bearing. Age at THA was 53 ± 13 (range 24–74) years. Osteonecrosis was the leading hip disease (45% of hips). Survivorship was assessed using revision of the cup as the end point. Radiological parameters, including lateral opening angle, vertical and horizontal migration distances of the cups were measured. Paired t-test was used to compare between the measurements in early postoperative period and at final follow up.

51 hips were assessed at minimum 20 years follow-up. The mean follow-up was 22.6 (range 21 – 25) years. All the cups were well fixed. There were two cup revisions. Conventional polyethylene (PE) was used in both hips; osteolysis occurred 17 and 18 years later. Both cups were well fixed but were revised, one due to cup mal-positioning, one due to need in upsizing the articulation. 14 other hips were revised but these cups were well fixed and not revised; 9 loosened stems (most were cemented Elite plus stems), 5 PE wear and osteolysis (all were conventional PE). At 20 years, the survivorship of cups was 96.1%. Changes in lateral opening angle, vertical and horizontal migration distances were 0.44±1.59°, 0.01±1.52mm and -0.32±1.47mm respectively, without statistical significance.

This study provided evidence of excellent long-term survivorship of cementless cup without screw holes. Immediate postoperative weight-bearing also did not lead to cup migration in the long-term.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 34 - 34
1 Aug 2018
García-Rey E García-Cimbrelo E Cordero-Ampuero J
Full Access

We assessed the clinical and radiological outcome of a single uncemented total hip replacement (THR) after twenty years, analysing polyethylene wear and osteolysis.

82 hips implanted between 1992 and 1995 were prospectively evaluated. Mean follow-up was 20.6 years (18–23). A hemispherical porous-coated cup matched to a proximally hydroxyapatite-coated anatomic stem. A 28mm PE liner, sterilised by gamma irradiation in air, was used in all hips. Radiological position, eventual loosening and osteolysis were recorded over time. Penetration of the head into the liner was measured by the Roentgen Monographic Analysis (ROMAN) Tool at 6 weeks, 6 months, one year and yearly thereafter.

Six cups were revised due to wear and four cups because of late dislocation. All stems showed osseointegration and all cups appeared radiographically well-fixed. Six unrevised hips showed osteolysis on the acetabular side and two hips on the proximal femur. Creep at one year was 0.30±0.23 mm. Mean total femoral head penetration was 1.23mm at ten years, 1.52mm at 15 years and 1.92mm at 23 years. Overall mean wear was 0.12±0.1 mm/year and 0.09±0.06 mm/year after the creep period. Mean wear was 0.08±0.06 mm/year in hips without osteolysis and 0.14±0.03 mm/year in hips revised or hips with osteolysis (p<0.001).

Although continued durable fixation can be observed with porous-coated cups and proximally hydroxyapatite-coated anatomic stems, true wear continues to increase at a constant level over time. PE wear remains as the main reason for osteolysis and revision surgery in uncemented THR after twenty years.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 3 | Pages 396 - 403
1 May 1998
Böhm P Bösche R

We reviewed 264 consecutive primary total hip replacements in 244 patients in which the Harris-Galante I porous-coated acetabular component had been used. The mean follow-up was 95 months (69 to 132). In 221 arthroplasties a 32 mm ceramic head had been used, and in the other 43 one of cobalt-chrome alloy. There were 124 women and 120 men with a mean age at operation of 56.8 years (21 to 83).

Survival analysis of the acetabular components was performed using the following definitions of failure: 1) infection; 2) removal because of aseptic loosening; 3) removal for any cause; and 4) a worst-case analysis including removal of the cup or infection or loss to follow-up.

Two well-fixed cups had been removed because of deep infection and three, similarly sound cups had been exchanged at the time of femoral revision. None of the acetabular components had required revision for aseptic loosening. After 11 years survival was 97.7% using the worst-case criterion. Radiological analysis of 187 acetabular components at a mean of 82 months (41 to 132) revealed no case of aseptic loosening. Pelvic osteolysis was seen in only one patient, but was not progressive and showed signs of regression.

The results using these acetabular components are encouraging but the need for regular follow-up remains since complications such as significant wear of the liner, massive osteolysis of the pelvis, aseptic loosening and late infection may increase in the second decade.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 41 - 41
1 Oct 2018
Tatka J Brady AW Matta JM
Full Access

Introduction

Accurate acetabular position is an important goal during THA. It is also well known that accurate acetabular positioning is very frequently not achieved, even by experienced, high volume surgeons. Problems associated with cup malposition are: dislocation, accelerated poly wear, impingement, ceramic squeaking, metalosis. Murray et al described 3 methods of measurement and assessment of acetabular inclination and anteversion (I&A): anatomic, radiographic and operative. It is the hypothesis of the authors, that the differences and details of these 3 methods are poorly understood by many surgeons and this is contributory to inconsistent cup positioning. Additionally, the radiographic method, which is most commonly used for post op assessment and academic studies, contributes to misunderstanding and error. Modern computer guidance and software assessment of radiographs allows us to easily measure anatomic I&A which should be thought of as “true” I&A.

Methods

The mathematical criteria for radiographic measurement of anatomic I&A are defined as well as the mathematical relationships and discrepancies between anatomic and radiographic I&A for any given cup.

A = A n g l e o f a n t e v e r s i o n o f c u p I = A n g l e o f i n c l i n a t i o n o f c u p

E = Angle of ellipse major diameter to horizontal

E = Radiographic inclination

Sin A = H o r i z o n t a l w i d t h o f e l l i p s e L e n g t h o f e l l i p s e m a j o r d i a m e t e r Sin I = V e r t i c a l h e i g h t o f e l l i p s e L e n g t h o f e l l i p s e m a j o r d i a m e t e r

Tan I = Tan E / Cos A

Tan E = (Tan I) x (Cos A)


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 839 - 845
1 Aug 2002
Havelin LI Espehaug B Engesæter LB

We have compared the survival of two hydroxyapatite (HA)-coated cups, 1208 Atoll hemispheric and 2641 Tropic threaded, with cemented Charnley all-polyethylene cups (16 021) using the Cox regression model.

The Tropic cup used in combination with an alumina ceramic femoral head, had good results, similar to those of the Charnley cup. When used in combination with a stainless-steel head, however, the risk of revision beyond four years was increased 3.4 times for the Tropic cup compared with the Charnley cup (p < 0.001). Over the same period, the Atoll cup had an increased risk of revision of 3.8 times when used with the alumina heads (p < 0.001) and an increased risk of 6.1 times when used with stainless-steel heads (p < 0.001). Revision because of wear and osteolysis was more common with both types of HA-coated cup than with the Charnley cup. The rate of revision of the Atoll cup because of aseptic loosening was also increased.

We found that HA-coated cups did not perform better than the Charnley cup.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 431 - 435
1 May 1999
Pradhan R

In total hip replacement, orientation of the cup is critical to the stability of the prosthesis. A new method to determine the angle of planar anteversion is described. A simple mathematical formula uses the measurements taken from anteroposterior radiographs to calculate the planar anteversion without reference to tables or charts.

An experimental study in vitro has shown the efficacy of the formula in giving results which are within a clinically acceptable range.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 136 - 143
1 Feb 2024
van der Lelij TJN Marang-van de Mheen PJ Kaptein BL Koster LA Ljung P Nelissen RGHH Toksvig-Larsen S

Aims

The objective of this study was to compare the two-year migration and clinical outcomes of a new cementless hydroxyapatite (HA)-coated titanium acetabular shell with its previous version, which shared the same geometrical design but a different manufacturing process for applying the titanium surface.

Methods

Overall, 87 patients undergoing total hip arthroplasty (THA) were randomized to either a Trident II HA or Trident HA shell, each cementless with clusterholes and HA-coating. All components were used in combination with a cemented Exeter V40 femoral stem. Implant migration was measured using radiostereometric analysis (RSA), with radiographs taken within two days of surgery (baseline), and at three, 12, and 24 months postoperatively. Proximal acetabular component migration was the primary outcome measure. Clinical scores and patient-reported outcome measures (PROMs) were collected at each follow-up.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 267 - 272
1 Mar 1998
Morscher EW Hefti A Aebi U

One concern about the fixation of HA-coated implants is the possible disintegration of the surface, with the migration of HA granules into the joint space, producing third-body wear.

We report a study of six revisions of HA-coated polyethylene RM cups at 9 to 14 years after successful primary arthroplasty. In all six hips, we found HA granules embedded in the articulating surface of the polyethylene, with abrasive wear of the cup and the metal femoral head. The cup had loosened in four hips and three showed severe osteolysis of the proximal femur.

Third-body wear due to HA particles from implant coating may produce severe clinical problems with few early warning signs. Further clinical, radiological and histological observations are needed to determine the possible incidence of this late complication in the various types of coating of a variety of substrates.


Bone & Joint Research
Vol. 2, Issue 12 | Pages 264 - 269
1 Dec 2013
Antoniades G Smith EJ Deakin AH Wearing SC Sarungi M

Objective

This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability.

Methods

Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm3 and 0.45 g/cm3). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1611 - 1617
1 Dec 2012
Jameson SS Baker PN Mason J Gregg PJ Brewster N Deehan DJ Reed MR

Despite excellent results, the use of cemented total hip replacement (THR) is declining. This retrospective cohort study records survival time to revision following primary cemented THR using the most common combination of components that accounted for almost a quarter of all cemented THRs, exploring risk factors independently associated with failure. All patients with osteoarthritis who had an Exeter V40/Contemporary THR (Stryker) implanted before 31 December 2010 and recorded in the National Joint Registry for England and Wales were included in the analysis. Cox’s proportional hazard models were used to analyse the extent to which risk of revision was related to patient, surgeon and implant covariates, with a significance threshold of p < 0.01. A total of 34 721 THRs were included in the study. The overall seven-year rate of revision for any reason was 1.70% (99% confidence interval (CI) 1.28 to 2.12). In the final adjusted model the risk of revision was significantly higher in THRs with the Contemporary hooded component (hazard ratio (HR) 1.88, p < 0.001) than with the flanged version, and in smaller head sizes (< 28 mm) compared with 28 mm diameter heads (HR 1.50, p = 0.005). The seven-year revision rate was 1.16% (99% CI 0.69 to 1.63) with a 28 mm diameter head and flanged component. The overall risk of revision was independent of age, gender, American Society of Anesthesiologists grade, body mass index, surgeon volume, surgical approach, brand of cement/presence of antibiotic, femoral head material (stainless steel/alumina) and stem taper size/offset. However, the risk of revision for dislocation was significantly higher with a ‘plus’ offset head (HR 2.05, p = 0.003) and a hooded acetabular component (HR 2.34, p < 0.001).

In summary, we found that there were significant differences in failure between different designs of acetabular component and sizes of femoral head after adjustment for a range of covariates.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 54 - 54
19 Aug 2024
AlFayyadh F Neufeld ME Howard LC Masri BA Greidanus NV Garbuz D
Full Access

There remains concern with the use of constrained liners (CL) implanted at the time of acetabular cup revision in revision total hip replacement (rTHA). The aim of this study was to determine the implant survival in rTHA when a CL was implanted at the same time as acetabular cup revision. We reviewed our institutional database to identify all consecutive rTHAs where a CL was implanted simultaneously at the time acetabular cup revision from 2001 to 2021. One-hundred and seventy-four revisions (173 patients) were included in the study. Mean follow-up of 8.7 years (range two – 21.7). The most common indications for rTHA were instability (35%), second-stage periprosthetic joint infection (26.4%), and aseptic loosening (17.2%). Kaplan Meier Analysis was used to determine survival with all-cause re-revision and revision for cup aseptic loosening (fixation failure) as the endpoints. A total of 32 (18.3%) patients underwent re-revision at a mean time of 2.9 years (range 0.1 – 14.1). The most common reasons for re-revision were instability (14), periprosthetic joint infection (seven), and loosening of the femoral component (four). Three (1.7%) required re-revision due to aseptic loosening of the acetabular component (fixation failure) at a mean of two years (0.1 – 5.1). Acetabular component survival free from re-revision due to aseptic loosening was 98.9% (95% CI 97.3 – 100) at five-years and 98.1% (95% CI 95.8 – 100) at 10-years. There were no acetabular component fixation failures in modern highly porous shells. CLs implanted at the time acetabular cup revision in rTHA have a 98.1% 10-year survival free from acetabular cup aseptic loosening (fixation failure). There were no cup fixation failures in modern highly porous shells. Thus, when necessary, implanting a CL during revision of an acetabular component with stable screw fixation is safe with an extremely low risk of cup fixation failure


Bone & Joint Research
Vol. 13, Issue 4 | Pages 193 - 200
23 Apr 2024
Reynolds A Doyle R Boughton O Cobb J Muirhead-Allwood S Jeffers J

Aims. Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies. Methods. Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment. Results. The force vector of the mallet strike, relative to the introducer axis, was misaligned by an average of 18.1°, resulting in an average wasted strike energy of 6.1%. Furthermore, the mean strike offset was 19.8 mm from the centre of the introducer axis and the mallet face, relative to the introducer strike face, was misaligned by a mean angle of 15.2° from the introducer strike face. Conclusion. The direction of the impact vector in manual impaction lacks both accuracy and precision. There is an opportunity to improve this through more advanced impaction instruments or surgical training. Cite this article: Bone Joint Res 2024;13(4):193–200


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 73 - 73
23 Jun 2023
Sheth N Bostrom M Winzenrieth R Humbert L Pearman L Caminis J Wang Y Boxberger J Krohn K
Full Access

To evaluate the effects of 6 and 18 months of abaloparatide (ABL) compared with placebo (PBO) on bone mineral density (BMD) in the acetabular regions of postmenopausal women with osteoporosis (OP). Acetabular bone loss, as may occur in OP, increases risk of acetabular fragility fractures. a. In total hip arthroplasty (THA), low acetabular BMD adversely affects primary stability, osseointegration, and migration of acetabular cups. c. ABL is an osteoanabolic agent for the treatment of men and postmenopausal women with OP at high risk for fracture. Effects of ABL on acetabular BMD are unknown. Hip DXA scans were obtained at baseline, 6, and 18 months from a random subgroup of postmenopausal women (aged 49–86 y) from the phase 3 ACTIVE trial randomized to either ABL 80 µg/d or PBO (n=250/group). Anatomical landmarks were identified in each DXA scan to virtually place a hemispherical shell model of an acetabular cup and define regions of interest corresponding to DeLee & Charnley zones 1 (R1), 2 (R2), and 3 (R3). BMD changes compared to baseline were calculated for each zone. Statistical P values were based on a repeated mixed measures model. BMD in all zones were similar at baseline in the ABL and PBO groups. BMD significantly increased in the ABL group at 6 and 18 months compared with PBO (all P<0.0001 vs PBO). BMD in the PBO group was relatively stable over time. ABL treatment resulted in rapid and progressive increases in BMD of all 3 acetabular zones. Increasing acetabular BMD has the potential to improve acetabular strength, which may reduce risk of acetabular fragility fractures. In bone health optimization prior to THA, increased acetabular BMD via ABL may provide better primary stability and longevity of acetabular cups in postmenopausal women with OP


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 36 - 36
7 Jun 2023
Hothi H Henckel J Di Laura A Skinner J Hart A
Full Access

3D printing acetabular cups offers the theoretical advantage of enhanced bony fixation due to greater design control of the porous implant surfaces. Analysing retrieved 3D printed implants can help determine whether this design intent has been achieved. We sectioned 14 off-the-shelf retrieved acetabular cups for histological analysis; 7 cups had been 3D printed and 7 had been conventionally manufactured. Some of the most commonly used contemporary designs were represented in both groups, which were removed due to either aseptic loosening, unexplained pain, infection or dislocation. Clinical data was collected for all implants, including their age, gender, and time to revision. Bone ingrowth was evaluated using microscopic assessment and two primary outcome measures: 1) bone area fraction and 2) extent of bone ingrowth. The additively manufactured cups were revised after a median (IQR) time of 24.9 months (20.5 to 45.6) from patients with a median (IQR) age of 61.1 years (48.4 to 71.9), while the conventional cups had a median (IQR) time to revision of 46.3 months (34.7 to 49.1, p = 0.366) and had been retrieved from patients with a median age of 66.0 years (56.9 to 68.9, p = 0.999). The additively and conventionally manufactured implants had a median (IQR) bone area fraction of 65.7% (36.4 to 90.6) and 33.9% (21.9 to 50.0), respectively (p < 0.001). A significantly greater amount of bone ingrowth was measured into the backside of the additively manufactured acetabular cups, compared to their conventional counterparts (p < 0.001). Bone occupied a median of 60.0% and 5.7% of the porous depth in the additively manufactured and conventional cups, respectively. 3D printed components were found to achieve a greater amount of bone ingrowth than their conventionally manufactured counterparts, suggesting that the complex porous structures generated through this manufacturing technique may encourage greater osteointegration


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 9 - 9
1 Nov 2021
Farey J Chai Y Xu J Sadegpour A Jones DM Baker N Vigdorchik J Walter W
Full Access

Imageless computer navigation systems in total hip arthroplasty (THA) improve acetabular cup position, thereby reducing the risk of revision surgery for all causes as well as dislocation. We aimed to evaluate the registration accuracy of 3 alternate registration planes. A prospective, observational study was conducted with 45 THA in the supine position using two imageless navigation systems and 3 registration planes. Patient position was registered sequentially using an optical system (Stryker OrthoMap) and an inertial sensor-based system (Navbit Sprint) with 3 planes of reference: (Plane 1) an anatomical plane using the anterior superior iliac spines (ASISs) and the pubic symphysis; (Plane 2) a functional plane parallel to the line between the ASISs and the table plane; and, (Plane 3) a functional plane that was perpendicular to the gravity vector and aligned with the longitudinal axis of the patient. The 3 measurements of acetabular cup inclination and anteversion were compared with the measurements from postoperative computed tomography (CT) scans. For inclination, the mean absolute error was significantly lower for Plane 3 (1.80°) than for Plane 2 (2.74°), p = .038 and was lower for both functional planes than for the anatomical plane (3.75°), p < .001. For anteversion, the mean absolute error was significantly lower for Plane 3 (2.00°) than for Plane 2 (3.69°), p = .004 and was lower for both functional planes than for the anatomical plane (8.58°), p < .001. Patient registration using functional planes more accurately measured the acetabular cup position than registration using anatomic planes


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 30 - 30
2 May 2024
Dhesi E Salih S Tomlinson R Salih S
Full Access

Polymethylmethacrylate (PMMA) bone cement is strong in compression, however it tends to fail under torsion. Sufficient pressurisation and subsequent interdigitation between cement and bone are critical for the mechanical interlock of cemented orthopaedic implants, and an irregular surface on the acetabular cup is necessary for reasonable fixation at the cup-cement interface. There is limited literature investigating discrepancies in the failure mechanisms of cemented all-polyethylene acetabular cups with and without cement spacers, under torsional loading. In vitro experimental comparison of three groups of polyethylene acetabular prosthesis (PAP) cemented into prepared sawbone hemipelvises:. * PAP without PMMA spacers maintaining an equal cement mantle circumferentially. (Group 1 n=3). * PAP without PMMA spacers cemented deliberately ‘bottoming-out’ the implant within the acetabulum. (Group 2 n=3). * PAP with PMMA spacers. (Group 3 n=3). The constructs were tested to torstional failure on a custom designed setup, and statistical analysis done by a one-way ANOVA and Tukey-Welsh test. Group 3 demonstrated superior torsional resistance with a statistically significant torque of 145Nm (SD±12Nm) at failure, compared to group 2 (109Nm, SD±7Nm) and group 1 (99Nm, SD±8Nm). Group 3 experienced failure predominantly at the bone-cement interface, in contrast, Groups 1 and 2 exhibited failure predominantly at the cup-cement interface. There was no significant difference between Group 1 and 2. Qualitative analysis of the failure mode indicates the efficient redistribution of stress throughout the cement mantle, consistent with the greater uniformity of cement. PMMA spacers increase the resistance to torsional failure at the implant-cement interface. Acetabular components without spacers (Groups 1 and 2) failed at the implant-cement interface before the cement-bone interface, at a statistically significantly lower level of torque to failure. Although the PMMA spacers may reduce cement interdigitation at the cement-bone interface the torsional forces required to fail are likely supraphysiological