Advertisement for orthosearch.org.uk
Results 1 - 20 of 120
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 48 - 48
1 Jun 2012
Moreau A Yuan Q Akoume M Karam N Taheri M Bouhanik S Rompre P Bagnall K Labelle H Poitras B Rivard C Grimard G Parent S
Full Access

Introduction. From the many human studies that attempt to identify genes for adolescent idiopathic scoliosis (AIS), the view emerging is that AIS is a complex genetic disorder with many predisposing genes exhibiting complex phenotypes through environmental interactions. Although advancements in genomic technology are transforming how we undertake genetic and genomic studies, only some success has been reached in deciphering complex diseases such as AIS. Moreover, the present challenge in AIS research is to understand the causative and correlative effects of discovered genetic perturbations. An important limitation to such investigations has been the absence of a method that can easily stratify patients with AIS. To overcome these challenges, we have developed a functional test that allows us to stratify patients with AIS into three functional subgroups, representing specific endophenotypes. Interestingly, in families with multiple cases of AIS, a specific endophenotype is shared among the affected family members, indicating that such a transmission is inherited. Moreover, increased vulnerability to AIS could be attributable to sustained exposure to osteopontin (OPN), a multifunctional cytokine that appears to be at the origin of the Gi-coupled receptor signalling dysfunction discovered in AIS. We examined the molecular expression profiles of patients with AIS and their response to OPN. Methods. Osteoblasts isolated from patients with AIS were selected for each functional subgroup and compared with osteoblasts obtained from healthy matched controls. We used the latest gene chip human genome array Affymetrix (HuU133 Plus 2.0 array) that allows for the analysis of the expression level of 38 000 well characterised human genes. Raw data were normalised with robust multiarray analysis method. Statistical analysis was done by the EB method with FlexArray software. Selection criteria for in-depth analysis include the magnitude of change in expression (at least □} 3-fold) and 5% false discovery rate as stringency selection. Validation of selected candidate genes was done by qPCR and at the protein level by Western blot and ELISA methods. Plasma OPN concentrations were measured by ELISA on a group of 683 consecutive patients with AIS and were compared with 262 healthy controls and 178 asymptomatic offspring, born from at least one scoliotic parent, and thus considered at risk of developing the disorder. The regulation of OPN signalling pathway in normal and AIS cells were validated in vitro by cellular dielectric spectroscopy (CDS). Results. Of 38 000 human genes tested, we have found eight genes specifically associated with the functional subgroup 1, 16 genes with the functional subgroup 2, and 11 genes with the functional subgroup 3. Interestingly, only 19 genes were shared and affected to the same extent in all AIS functional subgroups exhibiting a similar curve pattern (double major), suggesting their role in the formation of this curve pattern. Indeed, most of these genes encode for regulatory proteins such as transcription factors regulating axial skeleton, somite development, and extracellular matrix proteins. Mean plasma OPN concentrations were significantly increased in patients with AIS and correlated with disease severity. Increased plasma OPN concentrations were also detected in the asymptomatic at-risk group, suggesting that these changes precede scoliosis onset. CDS experiments clearly showed that OPN exposure triggers a Gi-coupled receptor signalling dysfunction, which is exacerbated by oestrogens. Conclusions. Our data further support our functional method of stratification of patients with AIS and allow the identification of genes triggering scoliosis onset versus those predisposing to the development of a specific curve pattern. Furthermore, our clinical and experimental data show that OPN is essential for scoliosis onset and curve progression, thus offering a first molecular concept to explain the pathomechanism leading to the asymmetrical growth of the spine in AIS. Acknowledgments. This research project was supported by grants from La Fondation Yves Cotrel de l'Institut de France, Canadian Institutes of Health Research, and Paradigm Spine LLC


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 1 - 1
1 Apr 2014
Price A Gardner A Baker D Berryman F Pynsent P
Full Access

Aim:. AIS causes a loss of trunk height. This paper documents this loss against sitting height standards and assesses formulae for adjusting height loss back to the standard. Methods:. A total of 334 patients (84% female) with AIS and no other known systemic disease had sitting height measured. This was compared to standards of sitting height with age and the ratio of height to sitting height with age (HSH). The corrected height was calculated using published formulae and replotted against these standards. Results:. Both sexes had significant numbers of patients under the 5th centile compared to those above the 95th centile for sitting height (p<0.05 in males and females) and for HSH centiles (p<0.05 in males and females). All formulae increased the sitting height back to within the standards. In males only the Ylikoski formula demonstrated any significant difference in sitting height and HSH. In females the Kono formula gave the least significant difference between those above and below the 95th and 5. th. centiles for sitting height and the Hwang formula for HSH. Discussion:. Scoliosis causes a loss of sitting height seen with the centile standards for sitting height and height to sitting height ratios. This can be corrected, the most accurate formula being Hwang, correcting the data to lie between the 5th and 95th centiles for sitting height with no significant difference between the number of outliers to these centiles. Outliers after use of this formula may suggest alternative pathology. Conflict Of Interest Statement: No conflict of interest


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 1 - 1
1 Jul 2012
Menon K
Full Access

Introduction. Morphological parameters are used to describe curve characters in AIS like curve location, curve magnitude, stiffness etc. Like all other morphological metrics the accuracy is more when digital imaging, archiving and extraction of features is used rather than manual measurements. The content Based Image Retrieval system is anew software that allows rapid, accurate documentation of AIS images and their retrieval by visual content. Classification systems and their shortcomings. Traditional classifications only looked at curve location (Ponsetti/Friedman); this was enhanced to add curve flexibility (to include or exclude secondary curves in fusion) (PUMC, King/Moe etc). Newer classifications like the Lenke have added sagittal profile into the decision making equation. From 5 basic curve types the subtypes have increased to 42 potential curve patterns by the addition of one parameter!! In future as we understand the 3-D geometry of these curves better we may want to add more measureable items (like degree of rotation) and by adding one term the subtypes would be 128!!! This suggests that we need to have a simple easy to remember way of classifying or eliminate classifications altogether. Experimental evidence. Several experiments were conducted with the new CBIR software which showed that similar images of scoliosis cases could be retrieved without resorting to a classification scheme. Even surgical planning can be made by downloading all similar cases operated before. The variability can be set to any level of precision desired. Significance. In future we may eliminate classifications to decide on curve types and for surgical planning and recall from a large multicentre database similar curves and their surgical plan


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 143 - 143
1 Apr 2012
Tokala D Mehtah J Hutchinson M Nelson I
Full Access

To compare the ability of fulcrum bend and traction radiographs to predict correction of AIS using screw only implants and to assess the fulcrum bending correction index (FBCI) with a new measurement: the traction correction index (TCI). Retrospective radiographic analysis of case series (Level IV). Radiographic correction of scoliosis based on correction rate does not take into consideration the curve flexibility. It has been suggested that fulcrum bending radiographs predict curve correction in AIS [1]. This has been questioned [2] and has been suggested that traction radiographs are more predictive in a mixed group of patients with hybrid and screw only constructs. Twenty three patients average age 15, who underwent posterior correction of scoliosis using pedicle screw only construct. Analysis was carried out on the pre-op and immediate post-op AP radiographs and the pre-op fulcrum bend and traction radiographs. Correction rate, fulcrum flexibility, traction flexibility, FBCI and TCI was calculated. Preoperative mean Cobb angle of 66 degrees was corrected to 25 degrees postoperatively. The mean fulcrum bending Cobb angle was 38 degrees and traction Cobb angle 28 degrees. The mean fulcrum flexibility was 45%, traction flexibility 59% and correction rate 63%. The mean FBCI was 182% and TCI was112%. When comparing fulcrum bend and traction radiographs, we found the latter to be more predictive of curve correction in AIS using pedicle screw constructs. The TCI better takes into account the curve flexibility than the FBCI


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 8 - 8
1 Apr 2014
Tokala D Grannum S Mehta J Hutchinson J Nelson I
Full Access

Aim:. To compare the ability of fulcrum bend and traction radiographs to predict correction of AIS using pedicle screw only constructs and to compare the fulcrum bending correction index (FBCI) with a new measurement: the traction correction index (TCI). Method:. Retrospective radiographic analysis of eighty patients, average age 14 yrs, who underwent posterior correction of scoliosis using pedicle screw only construct. Analysis was carried out on the pre-op and immediate post-op PA radiographs and the pre-op fulcrum bend and traction radiographs. Correction rate, fulcrum flexibility, traction flexibility, FBCI and TCI was calculated. Results:. Preoperative mean Cobb angle of 63.9 degrees was corrected to 25.8 degrees postoperatively. The mean fulcrum bending Cobb angle was 37.6 degrees and traction Cobb angle 26.6 degrees. The mean fulcrum flexibility was 41.1%, traction flexibility 58.4% and correction rate 59.6%. The mean FBCI was 144.9% and TCI was 102.1%. Discussion:. Radiographic correction of scoliosis based on correction rate does not take into consideration the curve flexibility. It has been suggested by Cheung et al, that fulcrum bending radiographs predict curve correction in AIS. Ibrahim et al, have questioned this, and they suggested that traction radiographs are more predictive in a mixed group of patients with hybrid and screw only constructs. Conclusions:. When comparing fulcrum bend and traction radiographs, we found the latter to be more predictive of curve correction in AIS using pedicle screw constructs. The TCI better takes into account the curve flexibility than the FBCI. Conflict Of Interest Statement: No conflict of interest


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 166 - 171
1 Feb 2023
Ragborg LC Dragsted C Ohrt-Nissen S Andersen T Gehrchen M Dahl B

Aims

Only a few studies have investigated the long-term health-related quality of life (HRQoL) in patients with an idiopathic scoliosis. The aim of this study was to investigate the overall HRQoL and employment status of patients with an idiopathic scoliosis 40 years after diagnosis, to compare it with that of the normal population, and to identify possible predictors for a better long-term HRQoL.

Methods

We reviewed the full medical records and radiological reports of patients referred to our hospital with a scoliosis of childhood between April 1972 and April 1982. Of 129 eligible patients with a juvenile or adolescent idiopathic scoliosis, 91 took part in the study (71%). They were evaluated with full-spine radiographs and HRQoL questionnaires and compared with normative data. We compared the HRQoL between observation (n = 27), bracing (n = 46), and surgical treatment (n = 18), and between thoracic and thoracolumbar/lumbar (TL/L) curves.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 536 - 541
1 Mar 2021
Ferlic PW Hauser L Götzen M Lindtner RA Fischler S Krismer M

Aims

The aim of this retrospective study was to compare the correction achieved using a convex pedicle screw technique and a low implant density achieved using periapical concave-sided screws and a high implant density. We hypothesized that there would be no difference in outcome between the two techniques.

Methods

We retrospectively analyzed a series of 51 patients with a thoracic adolescent idiopathic scoliosis. There were 26 patients in the convex pedicle screw group who had screws implanted periapically (Group 2) and a control group of 25 patients with bilateral pedicle screws (Group 1). The patients’ charts were reviewed and pre- and postoperative radiographs evaluated. Postoperative patient-reported outcome measures (PROMs) were recorded.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 13 - 13
1 Jul 2012
Subramanian AS Tsirikos AI
Full Access

Purpose of the study

To investigate the efficacy of pedicle screw instrumentation in correcting thoracolumbar/lumbar idiopathic scoliosis in adolescent patients.

Summary of Background Data

Thoracolumbar/lumbar scoliosis has been traditionally treated through an anterior approach and instrumented arthrodesis with the aim to include in the fusion the Cobb-to-Cobb levels and preserve distal mobile spinal segments. Posterior instrumentation has been extensively used for thoracic or thoracic and lumbar scoliosis. In the advent of all-pedicle screw constructs there is debate on whether thoracolumbar/lumbar scoliosis is best treated through an anterior or a posterior instrumented arthrodesis.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1308 - 1316
1 Oct 2013
Stokes OM Luk KDK

Adolescent idiopathic scoliosis affects about 3% of children. Non-operative measures are aimed at altering the natural history to maintain the size of the curve below 40° at skeletal maturity. The application of braces to treat spinal deformity pre-dates the era of evidence-based medicine, and there is a paucity of irrefutable prospective evidence in the literature to support their use and their effectiveness has been questioned.

This review considers this evidence. The weight of the evidence is in favour of bracing over observation. The most recent literature has moved away from addressing this question, and instead focuses on developments in the design of braces and ways to improve compliance.

Cite this article: Bone Joint J 2013;95-B:1308–16.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 10 - 10
1 Jul 2012
Subramanian AS Tsirikos AI
Full Access

Purpose of the study

To compare the effectiveness of unilateral and bilateral pedicle screw techniques in correcting adolescent idiopathic scoliosis.

Summary of Background Data

Pedicle screw constructs have been extensively used in the treatment of adolescent patients with idiopathic scoliosis. It has been suggested that greater implant density may achieve better deformity correction. However, this can increase the neurological risk related to pedicle screw placement, prolong surgical time and blood loss and result in higher instrumentation cost.


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 286 - 292
1 Mar 2024
Tang S Cheung JPY Cheung PWH

Aims. To systematically evaluate whether bracing can effectively achieve curve regression in patients with adolescent idiopathic scoliosis (AIS), and to identify any predictors of curve regression after bracing. Methods. Two independent reviewers performed a comprehensive literature search in PubMed, Ovid, Web of Science, Scopus, and Cochrane Library to obtain all published information about the effectiveness of bracing in achieving curve regression in AIS patients. Search terms included “brace treatment” or “bracing,” “idiopathic scoliosis,” and “curve regression” or “curve reduction.” Inclusion criteria were studies recruiting patients with AIS undergoing brace treatment and one of the study outcomes must be curve regression or reduction, defined as > 5° reduction in coronal Cobb angle of a major curve upon bracing completion. Exclusion criteria were studies including non-AIS patients, studies not reporting p-value or confidence interval, animal studies, case reports, case series, and systematic reviews. The GRADE approach to assessing quality of evidence was used to evaluate each publication. Results. After abstract and full-text screening, 205 out of 216 articles were excluded. The 11 included studies all reported occurrence of curve regression among AIS patients who were braced. Regression rate ranged from 16.7% to 100%. We found evidence that bracing is effective in achieving curve regression among compliant AIS patients eligible for bracing, i.e. curves of 25° to 40°. A similar effect was also found in patients with major curve sizes ranging from 40° to 60° when combined with scoliosis-specific exercises. There was also evidence showing that a low apical vertebral body height ratio, in-brace correction, smaller pre-brace Cobb angle, and daily pattern of brace-wear compliance predict curve regression after bracing. Conclusion. Bracing provides a corrective effect on scoliotic curves of AIS patients to achieve curve regression, given there is high compliance rate and the incorporation of exercises. Cite this article: Bone Joint J 2024;106-B(3):286–292


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 713 - 719
1 Jul 2024
Patel MS Shah S Elkazaz MK Shafafy M Grevitt MP

Aims. Historically, patients undergoing surgery for adolescent idiopathic scoliosis (AIS) have been nursed postoperatively in a critical care (CC) setting because of the challenges posed by prone positioning, extensive exposures, prolonged operating times, significant blood loss, major intraoperative fluid shifts, cardiopulmonary complications, and difficulty in postoperative pain management. The primary aim of this paper was to determine whether a scoring system, which uses Cobb angle, forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and number of levels to be fused, is a valid method of predicting the need for postoperative critical care in AIS patients who are to undergo scoliosis correction with posterior spinal fusion (PSF). Methods. We retrospectively reviewed all AIS patients who had undergone PSF between January 2018 and January 2020 in a specialist tertiary spinal referral centre. All patients were assessed preoperatively in an anaesthetic clinic. Postoperative care was defined as ward-based (WB) or critical care (CC), based on the preoperative FEV1, FVC, major curve Cobb angle, and the planned number of instrumented levels. Results. Overall, 105 patients were enrolled. Their mean age was 15.5 years (11 to 25) with a mean weight of 55 kg (35 to 103). The mean Cobb angle was 68° (38° to 122°). Of these, 38 patients were preoperatively scored to receive postoperative CC. However, only 19% of the cohort (20/105) actually needed CC-level support. Based on these figures, and an average paediatric intensive care unit stay of one day before stepdown to ward-based care, the potential cost-saving on the first postoperative night for this cohort was over £20,000. There was no statistically significant difference between the Total Pathway Score (TPS), the numerical representation of the four factors being assessed, and the actual level of care received (p = 0.052) or the American Society of Anesthesiologists grade (p = 0.187). Binary logistic regression analysis of the TPS variables showed that the preoperative Cobb angle was the only variable which significantly predicted the need for critical care. Conclusion. Most patients undergoing posterior fusion surgery for AIS do not need critical care. Of the readily available preoperative measures, the Cobb angle is the only predictor of the need for higher levels of care, and has a threshold value of 74.5°. Cite this article: Bone Joint J 2024;106-B(7):713–719


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 265 - 273
1 Feb 2022
Mens RH Bisseling P de Kleuver M van Hooff ML

Aims. To determine the value of scoliosis surgery, it is necessary to evaluate outcomes in domains that matter to patients. Since randomized trials on adolescent idiopathic scoliosis (AIS) are scarce, prospective cohort studies with comparable outcome measures are important. To enhance comparison, a core set of patient-related outcome measures is available. The aim of this study was to evaluate the outcomes of AIS fusion surgery at two-year follow-up using the core outcomes set. Methods. AIS patients were systematically enrolled in an institutional registry. In all, 144 AIS patients aged ≤ 25 years undergoing primary surgery (median age 15 years (interquartile range 14 to 17) were included. Patient-reported (condition-specific and health-related quality of life (QoL); functional status; back and leg pain intensity) and clinician-reported outcomes (complications, revision surgery) were recorded. Changes in patient-reported outcome measures (PROMs) were analyzed using Friedman’s analysis of variance. Clinical relevancy was determined using minimally important changes (Scoliosis Research Society (SRS)-22r), cut-off values for relevant effect on functioning (pain scores) and a patient-acceptable symptom state (PASS; Oswestry Disability Index). Results. At baseline, 65 out of 144 patients (45%) reported numerical rating scale (NRS) back pain scores > 5. All PROMs significantly improved at two-year follow-up. Mean improvements in SRS-22r function (+ 1.2 (SD 0.6)), pain (+ 0.6 (SD 0.8)), and self-image (+ 1.1 (SD 0.7)) domain scores, and the SRS-22r total score (+ 0.5 (SD 0.5)), were clinically relevant. At two-year follow-up, 14 out of 144 patients (10%) reported NRS back pain > 5. Surgical site infections did not occur. Only one patient (0.7%) underwent revision surgery. Conclusion. Relevant improvement in functioning, condition-specific and health-related QoL, self-image, and a relevant decrease in pain is shown at two-year follow-up after fusion surgery for AIS, with few adverse events. Contrary to the general perception that AIS is a largely asymptomatic condition, nearly half of patients report significant preoperative back pain, which reduced to 10% at two-year follow-up. Cite this article: Bone Joint J 2022;104-B(2):265–273


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 431 - 438
15 Mar 2023
Vendeuvre T Tabard-Fougère A Armand S Dayer R

Aims. This study aimed to evaluate rasterstereography of the spine as a diagnostic test for adolescent idiopathic soliosis (AIS), and to compare its results with those obtained using a scoliometer. Methods. Adolescents suspected of AIS and scheduled for radiographs were included. Rasterstereographic scoliosis angle (SA), maximal vertebral surface rotation (ROT), and angle of trunk rotation (ATR) with a scoliometer were evaluated. The area under the curve (AUC) from receiver operating characteristic (ROC) plots were used to describe the discriminative ability of the SA, ROT, and ATR for scoliosis, defined as a Cobb angle > 10°. Test characteristics (sensitivity and specificity) were reported for the best threshold identified using the Youden method. AUC of SA, ATR, and ROT were compared using the bootstrap test for two correlated ROC curves method. Results. Of 212 patients studied, 146 (69%) had an AIS. The AUC was 0.74 for scoliosis angle (threshold 12.5°, sensitivity 75%, specificity 65%), 0.65 for maximal vertebral surface rotation (threshold 7.5°, sensitivity 63%, specificity 64%), and 0.82 for angle of trunk rotation (threshold 5.5°, sensitivity 65%, specificity 80%). The AUC of ROT was significantly lower than that of ATR (p < 0.001) and SA (p < 0.001). The AUCs of ATR and SA were not significantly different (p = 0.115). Conclusion. The rasterstereographic scoliosis angle has better diagnostic characteristics than the angle of trunk rotation evaluated with a scoliometer, with similar AUCs and a higher sensitivity. Cite this article: Bone Joint J 2023;105-B(4):431–438


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 27 - 27
1 Oct 2022
Hobbs E Wood L
Full Access

Background. Scoliosis is described as a lateral spinal curvature exceeding ten degrees on radiograph with vertebral rotation. Approximately 80% of scoliosis presentations are adolescent idiopathic scoliosis (AIS). Current management for AIS in the UK occurs in Surgeon or Paediatrician-led clinics and can be conservative or surgical. The musculoskeletal assessment and triage of AIS appears well-suited to an advanced physiotherapist practitioner (APP) skill set. The aim of this service evaluation was to scope, develop, implement and evaluate a four-month pilot of an APP-led AIS triage pathway. Method and Results. Spinal Consultant deformity and scoliosis clinics were scoped and observed. Clinic inclusion criteria and a patient assessment form was developed. An APP AIS clinic was set up beside a consultant led clinic. All patients assessed were discussed with a spinal surgeon. Consultant and APP agreement (% of total), waiting times, surgical conversion, and patient satisfaction were reviewed. A clinical competency package was developed for training and development of APPs. A total of 49 patients were seen (20 sessions). Waiting list reduced from 10 weeks to 6 weeks. 45%(n=22) of new patients seen were diagnosed with AIS, 27% (n=6) were directly listed for surgery. Consultant/ APP percentage agreement was high for Cobb angle measurement (82%), management plans (90%), and further diagnostic requests (94%). There were no adverse events and high patient satisfaction levels (n=20), (100% Very satisfied or satisfied) were reported. Conclusion. APP-led AIS clinics can provide similar levels of management and assessment as Spinal Consultants with improved waiting times and high levels of satisfaction. Conflicts of interest: No conflicts of interest. Sources of funding: No funding obtained


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 7 - 7
1 Aug 2022
Mathieu H Amani H Patten SA Parent S Aragon J Barchi S Joncas J Child A Moldovan F
Full Access

The aim of this study is to clarify the implication of ciliary pathway on the onset of the spinal curvature that occurs in Adolescent Idiopathic Scoliosis (AIS) patients through functional studies of two genes: POC5 and TTLL11. Since the genetic implication for AIS is accepted, many association and candidate gene analysis revealed the implication of ciliary genes. The characterisation of these two proteins was assessed by qPCR, WB and immunofluorescence in vitro using control cells and cells derived from AIS patients. The impact of genetic modification of these genes on the functionality of the proteins in vitro and in vivo was analysed in zebrafish model created by CRISPR/Cas9 using microCT and histologic analysis. Our study revealed that mutant cells, for both gene, were less ciliated and the primary cilia was significantly shorter compared to control cells. We also observed a default in cilia glutamylation by immunofluorescence and Western Blot. Moreover, we observed in both zebrafish model, a 3D spine curvature similar to the spinal deformation in AIS. Interestingly, our preliminary results of immunohistology showed a retinal defect, especially at the cone cell layer level. This study strongly supports the implication of the ciliary pathway in the onset of AIS and this is the first time that a mechanism is described for AIS. Indeed, we show that shorter cilia could be less sensitive to environmental factors due to lower glutamylation and result in altered signalling pathway. Identifying the biological mechanism involved is crucial for elucidating AIS pathogenesis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_1 | Pages 2 - 2
23 Jan 2023
Newton Ede M Pearson MJ Philp AM Cooke ME Nicholson T Grover LM Jones SW
Full Access

To determine whether spinal facet osteoblasts at the curve apex display a different phenotype to osteoblasts from outside the curve in patients with adolescent idiopathic scoliosis (AIS). Intrinsic differences in the phenotype of spinal facet bone tissue and in spinal osteoblasts have been implicated in the pathogenesis of AIS. However, no study has compared the phenotype of facet osteoblasts at the curve apex with the facet osteoblasts from outside the curve in patients with AIS. Facet bone tissue was collected from three sites, the concave and convex side at the curve apex and from outside the curve from three female patients with AIS (aged 13–16 years). Micro-CT analysis was used to determine the density and trabecular structure. Osteoblasts were then cultured from the sampled bone. Osteoblast phenotype was investigated by assessing cellular proliferation (MTS assay), cellular metabolism (alkaline phosphatase and Seahorse Analyser), bone nodule mineralisation (Alizarin red assay), and the mRNA expression of Wnt signalling genes (quantitative RT-PCR). Convex bone showed greater bone mineral density and trabecular thickness than did concave bone. The convex side of the curve apex exhibited a significantly higher proliferative and metabolic phenotype and a greater capacity to form mineralised bone nodules than did concave osteoblasts. mRNA expression of SKP2 was significantly greater in both concave and convex osteoblasts than in non-curve osteoblasts. The expression of SFRP1 was significantly downregulated in convex osteoblasts compared with either concave or non-curve. Intrinsic differences that affect osteoblast function are exhibited by spinal facet osteoblasts at the curve apex in patients with AIS


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 4 - 4
1 Aug 2022
Watson F Loureiro RCV Leong JJH
Full Access

There is a need for non-radiographic, objective outcome measures for children with Adolescent Idiopathic Scoliosis (AIS). Standing balance and stability is altered in children with AIS. The Margin of Stability (MoS) has been used to compare gait stability in clinical populations. Our objective was to compare the MoS in anterior-posterior (MoS. AP. ) and mediolateral (MoS. ML. ) directions in girls with AIS to Controls. Girls with AIS and healthy girls walked at three speeds on an instrumented treadmill wearing retroreflective markers, surrounded by motion capture cameras. The MoS. AP/ML. was calculated at left and right heel strike. Data was processed in Visual 3D. A two-way ANOVA was used to compare MoS. AP/ML. between group, speed and the interaction between group and speed. Pearson's correlation coefficient was used to compare the MoS to Cobb angle. Statistical significance was accepted when p > 0.05. A priori power analysis suggested 12 participants per group. Three Cases and four Controls were recruited. Girls with AIS all had right-sided main thoracic curves (Lenke type 1a, 61.3° ± 10.0°). MoS. AP. was significantly bigger for Cases compared to Controls on the left (p=0.038) and right foot (p=0.041). There was no significant difference between Cases and Controls for MoS. ML. , but there was a visual trend for a smaller MoS. ML. in Cases. There was no significant difference for speed or the interaction between group and speed for MoS. AP. or MoS. ML. In Cases, MoS. AP. increased with increasing Cobb angle on the left (r. 2. =0.687, p=0.054) and right (r. 2. =0.634, p=0.067) and MoS. ML. decreased with increasing Cobb angle on the left (r. 2. =-0.912, p=0.002). Further subjects are being recruited. Girls with Lenke type 1a AIS are more stable in the AP direction and less stable in the ML direction than Controls during treadmill walking. AP stability increases and ML stability decreases with increasing Cobb angle. This research suggests that the MoS could be used as an outcome measure for children with AIS. Continued work is required to increase the power of this study. Further work could consider these changes during walking overground, measuring an MoS or MoS-like measure using a wearable device, and in different curve types


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims. Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. Methods. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed. Results. The greatest gains in productivity were in avoiding repeat intraoperative scans (a mean of 248 minutes for patients who had two scans, and a mean 180 minutes for those who had a single scan). Optimizing accuracy was the biggest factor influencing this, which was reliant on incremental changes to the operating setup and technique. Conclusion. The application of lean principles to the introduction of ION for AIS surgery helps assimilate this method into the environment of the operating theatre. Data and stakeholder analysis identified a reproducible technique for using ION for AIS surgery, reducing operating time, and radiation exposure. Cite this article: Bone Joint J. 2020;102-B(1):5–10


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 112 - 119
1 Jan 2022
Pietton R Bouloussa H Langlais T Taytard J Beydon N Skalli W Vergari C Vialle R

Aims. This study addressed two questions: first, does surgical correction of an idiopathic scoliosis increase the volume of the rib cage, and second, is it possible to evaluate the change in lung function after corrective surgery for adolescent idiopathic scoliosis (AIS) using biplanar radiographs of the ribcage with 3D reconstruction?. Methods. A total of 45 patients with a thoracic AIS which needed surgical correction and fusion were included in a prospective study. All patients underwent pulmonary function testing (PFT) and low-dose biplanar radiographs both preoperatively and one year after surgery. The following measurements were recorded: forced vital capacity (FVC), slow vital capacity (SVC), and total lung capacity (TLC). Rib cage volume (RCV), maximum rib hump, main thoracic curve Cobb angle (MCCA), medial-lateral and anteroposterior diameter, and T4-T12 kyphosis were calculated from 3D reconstructions of the biplanar radiographs. Results. All spinal and thoracic measurements improved significantly after surgery (p < 0.001). RCV increased from 4.9 l (SD 1) preoperatively to 5.3 l (SD 0.9) (p < 0.001) while TLC increased from 4.1 l (SD 0.9) preoperatively to 4.3 l (SD 0.8) (p < 0.001). RCV was correlated with all functional indexes before and after correction of the deformity. Improvement in RCV was weakly correlated with correction of the mean thoracic Cobb angle (p = 0.006). The difference in TLC was significantly correlated with changes in RCV (p = 0.041). It was possible to predict postoperative TLC from the postoperative RCV. Conclusion. 3D rib cage assessment from biplanar radiographs could be a minimally invasive method of estimating pulmonary function before and after spinal fusion in patients with an AIS. The 3D RCV reflects virtual chest capacity and hence pulmonary function in this group of patients. Cite this article: Bone Joint J 2022;104-B(1):112–119