header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Spine

INCREASED DYNAMIC STABILITY IN CHILDREN WITH ADOLESCENT IDIOPATHIC SCOLIOSIS

The British Scoliosis Research Foundation (BSRF) 17th International Phillip Zorab Symposium, London, England, 23–24 June 2022.



Abstract

There is a need for non-radiographic, objective outcome measures for children with Adolescent Idiopathic Scoliosis (AIS). Standing balance and stability is altered in children with AIS. The Margin of Stability (MoS) has been used to compare gait stability in clinical populations. Our objective was to compare the MoS in anterior-posterior (MoSAP) and mediolateral (MoSML) directions in girls with AIS to Controls.

Girls with AIS and healthy girls walked at three speeds on an instrumented treadmill wearing retroreflective markers, surrounded by motion capture cameras. The MoSAP/ML was calculated at left and right heel strike. Data was processed in Visual 3D. A two-way ANOVA was used to compare MoSAP/ML between group, speed and the interaction between group and speed. Pearson's correlation coefficient was used to compare the MoS to Cobb angle. Statistical significance was accepted when p > 0.05.

A priori power analysis suggested 12 participants per group. Three Cases and four Controls were recruited. Girls with AIS all had right-sided main thoracic curves (Lenke type 1a, 61.3° ± 10.0°). MoSAP was significantly bigger for Cases compared to Controls on the left (p=0.038) and right foot (p=0.041). There was no significant difference between Cases and Controls for MoSML, but there was a visual trend for a smaller MoSML in Cases. There was no significant difference for speed or the interaction between group and speed for MoSAP or MoSML. In Cases, MoSAP increased with increasing Cobb angle on the left (r2=0.687, p=0.054) and right (r2=0.634, p=0.067) and MoSML decreased with increasing Cobb angle on the left (r2=-0.912, p=0.002). Further subjects are being recruited.

Girls with Lenke type 1a AIS are more stable in the AP direction and less stable in the ML direction than Controls during treadmill walking. AP stability increases and ML stability decreases with increasing Cobb angle. This research suggests that the MoS could be used as an outcome measure for children with AIS. Continued work is required to increase the power of this study. Further work could consider these changes during walking overground, measuring an MoS or MoS-like measure using a wearable device, and in different curve types.


Email: