Gait analysis is an indispensable tool for scientific assessment and treatment of individuals whose ability to walk is impaired. The high cost of installation and operation are a major limitation for wide-spread use in clinical routine. Advances in Artificial Intelligence (AI) could significantly reduce the required instrumentation. A mobile phone could be all equipment necessary for 3D gait analysis. MediaPipe Pose provided by Google Research is such a Machine Learning approach for human body tracking from monocular RGB video frames that is detecting 3D-landmarks of the human body. Aim of this study was to analyze the accuracy of gait phase detection based on the joint landmarks identified by the
Introduction:. Most of the published papers on
Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the normal range of the parameters that are used to assess both was a matter of essence. Nevertheless, the main aim of this study was clarification the relationship between acetabular inclination (AI) and acetabular and femoral head arcs’ radii (AAR and FHAR). A cross-sectional retrospective study that had been done in a tertiary center where Computed tomography abdomen scouts’ radiographs of non-orthopedics patients were included. They had no history of pelvic or hips’ related symptoms or fractures in femur or pelvis. A total of 84 patients was included with 52% of them were females. The mean of age was 30.38± 5.48. Also, Means of
Critical shoulder angle (CSA), lateral acromial angle (LAA), and acromion index (AI) are common radiologic parameters used to distinguish between patients with rotator cuff tears (RCT) and those with an intact rotator cuff. This study aims to assess the predictive power of these parameters in degenerative RCT. This retrospective study included data from 92 patients who were divided into two groups: the RCT group, which included 47 patients with degenerative full-thickness supraspinatus tendon tears, and a control group of 45 subjects without tears. CSA,
Introduction. The recent introduction of Chatbots has provided an interactive medium to answer patient questions. The accuracy of responses with these programs in limb lengthening and reconstruction surgery has not previously been determined. Therefore, the purpose of this study was to assess the accuracy of answers from 3 free
Introduction. Shoulder arthroplasty (SA) has been performed with different types of implants, each requiring different replacement systems. However, data on previously utilized implant types are not always available before revision surgery, which is paramount to determining the appropriate equipment and procedure. Therefore, this meta-analysis aimed to evaluate the accuracy of the
Purpose. Collagen-rich structures of the knee are prone to damage through acute injury or chronic “wear and tear”. Collagen becomes more disorganised in degenerative tissue e.g. osteoarthritis. An alignment index (AI) used to analyse orientation distribution of collagen-rich structures is presented. Method. A healthy caprine knee was scanned in a Siemens Verio 3T Scanner. The caprine knee was rotated and scanned in nine directions to the main magnetic field B. 0. A 3D PD SPACE sequence with isotropic 1×1×1mm voxels (TR1300ms, TE13ms, FOV256mm,) was optimised to allow for a greater angle-sensitive contrast. For each collagen-rich voxel the orientation vector is computed using Szeverenyi and Bydder's method. Each orientation vector reflects the net effect of all the fibres comprised within a voxel. The assembly of all unit vectors represents the fibre orientation map. Alignment Index (AI) in any direction is defined as a ratio of the fraction of orientations within 20° (solid angle) centred in that direction to the same fraction in a random (flat) case. In addition,
In the last decades, the use of artificial intelligence (AI) has been increasingly investigated in intervertebral disc degeneration (IDD) and chronic low back pain (LBP) research. To date, several AI-based cutting-edge technologies, such as computer vision, computer-assisted diagnosis, decision support system and natural language processing have been utilized to optimize LBP prevention, diagnosis, and treatment. This talk will provide an outline on contemporary
Artificial Intelligence (AI) is becoming more powerful but is barely used to counter the growth in health care burden.
The aim of this scoping review is to understand the extent and type of evidence in relation to the use of guided growth for correcting rotational deformities of long bones. Guided growth is routinely used to correct angular deformities in long bones in children. It has also been proven to be a viable method to correct rotational deformities, but the concept is not yet fully examined. Databases searched include Medline, Embase, Cochrane Library, Web of Science and Google Scholar. All identified citations were uploaded into Rayyan.
Introduction. Patients (2.7M in EU) with positive cancer prognosis frequently develop metastases (≈1M) in their remaining lifetime. In 30-70% cases, metastases affect the spine, reducing the strength of the affected vertebrae. Fractures occur in ≈30% patients. Clinicians must choose between leaving the patient exposed to a high fracture risk (with dramatic consequences) and operating to stabilise the spine (exposing patients to unnecessary surgeries). Currently, surgeons rely on their sole experience. This often results in to under- or over-treatment. The standard-of-care are scoring systems (e.g. Spine Instability Neoplastic Score) based on medical images, with little consideration of the spine biomechanics, and of the structure of the vertebrae involved. Such scoring systems fail to provide clear indications in ≈60% patients. Method. The HEU-funded METASTRA project is implemented by biomechanicians, modellers, clinicians, experts in verification, validation, uncertainty quantification and certification from 15 partners across Europe. METASTRA aims to improve the stratification of patients with vertebral metastases evaluating their risk of fracture by developing dedicated reliable computational models based on Explainable Artificial Intelligence (AI) and on personalised Physiology-based biomechanical (VPH) models. Result. The METASTRA-AI model is expected to be able to stratify most patients with limited effort end cost, based on parameters extracted semi-automatically from the medical files and images. The cases which are not reliably stratified through the
Chronic inflammatory events have been associated to almost every chronic disease, including cardiovascular-, neurodegenerative- and autoimmune- diseases, cancer, and host-implant rejection. Given the toll of chronic inflammation in healthcare and socioeconomical costs developing strategies to resolve and control chronic states of inflammation remain a priority for the significant benefit of patients. Macrophages (Mφ) hold a central role both in the initiation and resolution of inflammatory events, assuming different functional profiles. The outstanding features of Mφ counting with the easy access to tissues, and the extended networking make Mφ excellent candidates for precision therapy. Moreover, sophisticated macrophage-oriented systems could offer innovative immune-regulatory alternatives to effectively regulate chronic environments that traditional pharmacological agents cannot provide. We propose magnetically assisted systems for balancing Mφ functions at the injury site. This platform combines polymers, inflammatory miRNA antagonists and magnetically responsive nanoparticles to stimulate Mφ functions towards pro-regenerative phenotypes. Strategies with magnetically assisted systems include contactless presentation of immune-modulatory molecules, cell internalization of regulatory agents for functional programming via magnetofection, and multiple payload delivery and release. Overall, Mφ-oriented systems stimulated pro-regenerative functions of Mφ supporting magnetically assisted theranostic nanoplatforms for precision therapies, envisioning safer and more effective control over the distribution of sensitive nanotherapeutics for the treatments of chronical inflammatory conditions.
RES Hub (Norte-01-0145-FEDER-022190).
Introduction and Objective. Up to 30% of thoracolumbar (TL) fractures are missed in the emergency room. Failure to identify these fractures can result in neurological injuries up to 51% of the casesthis article aimed to clarify the incidence and risk factors of traumatic fractures in China. The China National Fracture Study (CNFS. Obtaining sagittal and anteroposterior radiographs of the TL spine are the first diagnostic step when suspecting a traumatic injury. In most cases, CT and/or MRI are needed to confirm the diagnosis. These are time and resource consuming. Thus, reliably detecting vertebral fractures in simple radiographic projections would have a significant impact. We aim to develop and validate a deep learning tool capable of detecting TL fractures on lateral radiographs of the spine. The clinical implementation of this tool is anticipated to reduce the rate of missed vertebral fractures in emergency rooms. Materials and Methods. We collected sagittal radiographs, CT and MRI scans of the TL spine of 362 patients exhibiting traumatic vertebral fractures. Cases were excluded when CT and/or MRI where not available. The reference standard was set by an expert group of three spine surgeons who conjointly annotated (fracture/no-fracture and AO Classification) the sagittal radiographs of 171 cases. CT and/or MRI were used confirm the presence and type of the fracture in all cases. 302 cropped vertebral images were labelled “fracture” and 328 “no fracture”. After augmentation, this dataset was then used to train, validate, and test deep learning classifiers based on the ResNet18 and VGG16 architectures. To ensure that the model's prediction was based on the correct identification of the fracture zone, an Activation Map analysis was conducted. Results. Vertebras T12 to L2 were the most frequently involved, accounting for 48% of the fractures. Accuracies of 88% and 84% were obtained with ResNet18 and VGG16 respectively. The sensitivity was 89% with both architectures but ResNet18 had a significantly higher specificity (88%) compared to VGG16 (79%). The fracture zone used was precisely identified in 81% of the heatmaps. Conclusions. Our
Guidelines from the North American Spine Society (2009 and 2013) are the best evidence-based instructions on venous thromboembolism (VTE) and antibiotic prophylaxis in spinal surgery. NICE guidelines exist for VTE prophylaxis but do not specifically address spinal surgery. In addition, the ruling of the UK Supreme Court in 2015 resulted in new guidance on consent being published by the Royal College of Surgeons of England (RCSEng). This study assesses our compliance in antibiotic, VTE prophylaxis and consent in spinal surgery against both US and UK standards. Retrospective review of spinal operations performed between August and December 2016. Case notes, consent forms and operation notes were analysed for consent, peri-operative antibiotic prescribing and post-operative VTE instructions.Introduction
Methods
Tendon injuries are a worldwide problem affecting several age groups and stem cell based therapies hold potential for tendon strategies guiding tendon regeneration. Tendons rely on mechano-sensing mechanisms that regulate homeostasis and influence regeneration. The mechanosensitive receptors available in cell membranes sense the external stimuli and initiate mechanotransduction processes. Activins are members of the TGF-β superfamily which participate in several tendon biological processes. It is envisioned that the activation of the activin receptor, trigger downstream Smad2/3 pathway thus regulating the transcription of tenogenic genes driving stem cell differentiation. In this work, we propose to target the Activin receptor type IIA (ActRIIA) in human adipose stem cells (hASCs), inducing hASCs commitment towards the tenogenic lineage. Since mechanotransduction can be remotely triggered through magnetic actuation combined with magnetic nanoparticles (MNPs), we stimulated hASCs tagged complexes using a vertical oscillating magnetic bioreactor (MICA Biosystems Ltd). Carboxyl functionalised MNPs (Micromod) were coated with anti-ActRIIA antibody (Abcam) by carbodiimide activation. hASCs were then cultured with MNPs-anti-ActRIIA for 14days with or without magnetic exposure (1Hz, 1h/every other day). hASCs cultured alone in αMEM (negative control) or in αMEM supplemented with ActivinA (R&D systems) (positive control of ActRIIA activation) were used as experimental controls. The tenogenic commitment of hASCs was assessed by real time RT-PCR, immunocytochemistry and quantification of collagen and non-collagenous proteins. Moreover, the phosphorylation of Smad2/3 was also evaluated on hASCs incubated for 2, 10, or 30min under magnetic stimulated (1Hz) and non-stimulated conditions. The increased gene expression of tendon related markers and higher ECM proteins deposition suggests that remote magnetic activation of ActRIIA promotes effectively hASCs tenogenic commitment. Furthermore, the detection of phospho-Smad2/3 proteins by ELISA (Cell Signaling Technology) was significantly more intense after 10min in hASCs under magnetic stimulation and in comparison to the control groups. These outcomes suggest that ActRIIA is a mechanosensitive receptor that can be remotely activated upon magnetic stimulation. In conclusion, remotely activation of MNPs tagged hASCs has potential for modulating tenogenic differentiation of stem cells envisioning successful cell therapies for tendon regeneration. FCT/MCTES PD/59/2013 (fellowship PD/BD/113802/2015), FCT post-doctoral grant SFRH/BPD/111729/2015, FCT grant IF/00685/2012, and EU-ITN MagneticFun.Acknowledgements
Platelet-leucocyte gel (PLG), a new biotechnological blood product, has hitherto been used primarily to treat chronic ulcers and to promote soft-tissue and bone regeneration in a wide range of medical fields. In this study, the antimicrobial efficacy of PLG against Staphylococcus aureus (ATCC 25923) was investigated in a rabbit model of osteomyelitis. Autologous PLG was injected into the tibial canal after inoculation with Staph. aureus. The prophylactic efficacy of PLG was evaluated by microbiological, radiological and histological examination. Animal groups included a treatment group that received systemic cefazolin and a control group that received no treatment. Treatment with PLG or cefazolin significantly reduced radiological and histological severity scores compared to the control group. This result was confirmed by a significant reduction in the infection rate and the number of viable bacteria. Although not comparable to cefazolin, PLG exhibited antimicrobial efficacy in vivo and therefore represents a novel strategy to prevent bone infection in humans.
We investigated the effect of stimulation with a pulsed electromagnetic field on the osseointegration of hydroxyapatite in cortical bone in rabbits. Implants were inserted into femoral cortical bone and were stimulated for six hours per day for three weeks. Electromagnetic stimulation improved osseointegration of hydroxyapatite compared with animals which did not receive this treatment in terms of direct contact with the bone, the maturity of the bone and mechanical fixation. The highest values of maximum push-out force (Fmax) and ultimate shear strength (σu) were observed in the treated group and differed significantly from those of the control group at three weeks (Fmax; p <
0.0001; σu, p <
0.0005).