header advert
Results 1 - 17 of 17
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 78 - 78
1 Apr 2019
Dessinger G Mahfouz M Fatah EEA Johnson J Komistek R
Full Access

Introduction. At present, orthopaedic surgeons utilize either CT, MRI or X-ray for imaging a joint. Unfortunately, CT and MRI are quite expensive, non weight-bearing and the orthopaedic surgeon does not receive revenue for these procedures. Although x-rays are cheaper, similar to CT scans, patients incur radiation. Also, all three of these imaging modalities are static. More recently, a new ultrasound technology has been developed that will allow a surgeon to image their patients in 3D. The objective of this study is to highlight the new opportunity for orthopaedic surgeons to use 3D ultrasound as alternative to CT, MRI and X-rays. Methods. The 3D reconstruction process utilizes statistical shape atlases in conjunction with the ultrasound RF data to build the patient anatomy in real-time. The ultrasound RF signals are acquired using a linear transducer. Raw RF data is then extracted across each scan line. The transducer is tracked using a 3D tracking system. The location and orientation for each scan line is calculated using the tracking data and known position of the tracker relative to the signal. For each scan line, a detection algorithm extracts the location on the signal of the bone boundary, if any exists. Throughout the scan process, a 3D point cloud is created for each detected bone signal. Using a statistical bone atlas for each anatomy, the patient specific surface is reconstruction by optimizing the geometry to match the point cloud. Missing regions are interpolated from the bone atlas. To validate reconstructed models output models are then compared to models generated from 3D imaging, including CT and MRI. Results. 3D ultrasound, which now has FDA approval in the United States, is presently available for an orthopaedic surgeon to use. Error analyses have been conducted in comparison to MRI and CT scans and revealed that 3D ultrasound has a similar accuracy of less than 1.0 mm in the creation of a 3D bone and soft-tissues. Unlike CT and MRI scans that take in excess of 2–3 weeks to create human bones, 3D ultrasound creates bones in 4–6 minutes. Once the bones are created, the surgeon can assess bone quality, ligament and cartilage conditions, assess osteophytes, fractures and guide needles into the 3D joint space. The creation of 3D bones has been accurately assessed for the spine, shoulder, knee, hip and ankle joints. A 3D joint pre-operative planning module has also been developed for a surgeon to size and position components before surgery. Discussion. 3D ultrasound is an exciting new imaging technology available for orthopaedic surgeons to use in their practice. Existing CPT codes are readily available for 3D ultrasound procedures. A surgeon can now evaluate and diagnose bone and soft- tissue conditions, in 3D, using ultrasound, which is safer and is an easier procedure compared to CT, MRI and X-rays. This new ultrasound technology is a highly accurate imaging technique that will allow a surgeon to diagnose bone and soft-tissue concerns in 3D, under weight-bearing, dynamic conditions and guide needle injections to correct location, in 3D


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 451 - 452
1 Sep 2009
Ross E MacGillivray T Muir A Simpson A
Full Access

X-ray is the standard method for monitoring fracture healing however it is not ideal; signs of healing are not normally visible on X-ray until around 6–8 weeks post fracture. Ultrasonography allows the detection of both the initial haematoma, usually formed immediately after fracture, and the small calcium deposits laid down between broken bone ends in the first stages of fracture healing. It has been reported that these early indicators of the healing process are visible as early as 1–2 weeks after fracture. We use Freehand 3D Ultrasound to monitor the early stages of fracture healing as both the bone surface and surrounding soft tissues can be imaged simultaneously. The Freehand 3D Ultrasound system consists of a standard Ultrasound machine, a PC running STRAD-WIN (Medical Imaging Group, Cambridge University) 3D software, and an optical tracking devise (NDI Polaris) to record the position and orientation of the Ultrasound probe during scanning. Images are transferred from the Ultrasound machine to the PC using RF capture through out a scan. Calibrating the system matches up the correct image with the correct probe position to produce a 3D dataset. We segment features of interest on the sequence of 2D images to construct a 3D model. These models are rotatable and provide views of the scanned anatomy that are not otherwise achievable using conventional Ultrasound or X-ray. The 3D data set can also be resliced through any plane to provide further views. To conduct a 3D Ultrasound scan takes the same amount of time as a conventional 2D scan. The production of the 3D model takes between 15–60 minutes depending on the level of detail required. Distances are measurable to within ±0.4mm meaning fracture gaps of sub-millimeter width can be resolved. The system has already been evaluated on healthy volunteers and a clinical study currently underway


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 34 - 34
1 Oct 2020
Mahfouz MR
Full Access

Introduction. The objective of this study is to assess the use of ultrasound (US) as a radiation free imaging modality to reconstruct three-dimensional knee anatomy. Methods. An OEM US system is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allowing for 3D tracking of probe and femur and tibia. The raw US RF signals are acquired and using real time signal processing, bone boundaries are extracted. Bone boundaries are then combined with the EM sensor information in a 3D point cloud for both femur and tibia. Using a statistical shape model, the patient specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was then conducted for 11 cadavers by comparing the 3D US models to those created using CT scans. Results. The results revealed the US bone models were accurate compared to the CT models (Mean RMS: femur: 1.03±0.15 mm, tibia:1.11± 0.13). Also, femoral landmarking proved to be accurate (transepicondylar axis: 1.07±0.65°, Posterior condylar axis: 0.73±0.41° Distal condylar axis: 1.12±0.89°, Medial AP: 1.39±1.18 mm, Lateral AP: 1.56±1.15 mm, TEA width: 1.2±0.87 mm). Tibial landmarking errors were slightly higher (Posterior slope axis: 2 ±1.19° and Tubercle axis: 1.8±1.37°). The models were then used to evaluate implant sizing as, 90% of the femurs and 60% of the tibias were sized correctly, while the others were off only one size. Discussion. The 3D US bone models were proven to be accurate compared to CT and can be used for preoperative planning. 3D ultrasound is radiation free and offers numerous clinical opportunities for bone creation in minutes during their office visit, surgeon-patient pre-operative planning, implant sizing and selection, 3D dynamic ligament balancing and intra-operative registration for use with robots and navigation systems


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 366 - 366
1 Jul 2008
Ross E MacGillivray T Simpson H McDicken W
Full Access

Imaging of the musculoskeletal system is vital for delivering optimum treatment particularly in the assessment of fracture healing. X-ray and CT are adequate imaging methods for bone but, soft tissue needs other modalities such as MRI and Ultrasound. We propose the use of Freehand 3D Ultrasound to study the early stages of fracture healing by imaging the bone surfaces around the fracture site and monitoring changes in the surrounding soft tissue. Freehand 3D ultrasound is acquired by attaching a position sensor to the probe of a conventional 2D diagnostic ultrasound machine. As the probe is moved, its position and orientation are recorded along with the 2D ultrasound images. This enables slices through the body to be viewed that would be inaccessible using a normal ultrasound system. Bone surfaces around a fracture site are scanned and the data reconstructed using the Stradx and Stradwin software developed by Cambridge University, to give a 3D visualization of the area. To assess the feasibility of this proposed method the lower limbs of healthy volunteers were scanned using a 5–10MHz ultrasound probe. The scanning resolution of the system was evaluated using a phantom to ensure millimetre detail could be detected as would be required for imaging early fracture healing. It was found that detail down to 0.8mm could easily be resolved for measurement. The 3D system could accurately profile the different soft tissue interfaces. The visible surfaces of the tibia were reconstructed to give 3D models. Additional layers of soft tissue interfaces could easily be added to these models to provide more detail. This imaging modality can provided detailed 3D models of bone the bone surface and surrounding soft tissue. As ultrasound is non-ionizing, rescanning can be conducted more frequently than with CT or x-ray thus offering a more accurate assessment of a patient’s response to healing


Bone & Joint Research
Vol. 10, Issue 12 | Pages 759 - 766
1 Dec 2021
Nicholson JA Oliver WM MacGillivray TJ Robinson CM Simpson AHRW

Aims

The aim of this study was to establish a reliable method for producing 3D reconstruction of sonographic callus.

Methods

A cohort of ten closed tibial shaft fractures managed with intramedullary nailing underwent ultrasound scanning at two, six, and 12 weeks post-surgery. Ultrasound capture was performed using infrared tracking technology to map each image to a 3D lattice. Using echo intensity, semi-automated mapping was performed to produce an anatomical 3D representation of the fracture site. Two reviewers independently performed 3D reconstructions and kappa coefficient was used to determine agreement. A further validation study was undertaken with ten reviewers to estimate the clinical application of this imaging technique using the intraclass correlation coefficient (ICC).


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 84 - 84
1 Dec 2022
du Toit C Dima R Jonnalagadda M Fenster A Lalone E
Full Access

The opposable thumb is one of the defining characteristics of human anatomy and is involved in most activities of daily life. Lack of optimal thumb motion results in pain, weakness, and decrease in quality of life. First carpometacarpal (CMC1) osteoarthritis (OA) is one of the most common sites of OA. Current clinical diagnosis and monitoring of CMC1 OA disease are primarily aided by X-ray radiography; however, many studies have reported discrepancies between radiographic evidence of CMC1 OA and patient-related outcomes of pain and disability. Radiographs lack soft-tissue contrast and are insufficient for the detection of early characteristics of OA such as synovitis, which play a key role in CMC OA disease progression. Magnetic resonance imaging (MRI) and two-dimensional ultrasound (2D-US) are alternative options that are excellent for imaging soft tissue pathology. However, MRI has high operating costs and long wait-times, while 2D-US is highly operator dependent and provides 2D images of 3D anatomical structures. Three-dimensional ultrasound imaging may be an option to address the clinical need for a rapid and safe point of care imaging device. The purpose of this research project is to validate the use of mechanically translated 3D-US in CMC OA patients to assess the measurement capabilities of the device in a clinically diverse population in comparison to MRI.

Four CMC1-OA patients were scanned using the 3D-US device, which was attached to a Canon Aplio i700 US machine with a 14L5 linear transducer with a 10MHz operating frequency and 58mm. Complimentary MR images were acquired using a 3.0 T MRI system and LT 3D coronal photon dense cube fat suppression sequence was used. The volume of the synovium was segmented from both 3D-US and MR images by two raters and the measured volumes were compared to find volume percent differences. Paired sample t-test were used to determine any statistically significant differences between the volumetric measurements observed by the raters and in the measurements found using MRI vs. 3D-US. Interclass Correlation Coefficients were used to determine inter- and intra-rater reliability.

The mean volume percent difference observed between the two raters for the 3D-US and MRI acquired synovial volumes was 1.77% and 4.76%, respectively. The smallest percent difference in volume found between raters was 0.91% and was from an MR image. A paired sample t-test demonstrated that there was no significant difference between the volumetric values observed between MRI and 3D-US. ICC values of 0.99 and 0.98 for 3D-US and MRI respectively, indicate that there was excellent inter-rater reliability between the two raters.

A novel application of a 3D-US acquisition device was evaluated using a CMC OA patient population to determine its clinical feasibility and measurement capabilities in comparison to MRI. As this device is compatible with any commercially available ultrasound machine, it increases its accessibility and ease of use, while proving a method for overcoming some of the limitations associated with radiography, MRI, and 2DUS. 3DUS has the potential to provide clinicians with a tool to quantitatively measure and monitor OA progression at the patient's bedside.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 913 - 923
28 Nov 2022
Hareendranathan AR Wichuk S Punithakumar K Dulai S Jaremko J

Aims. Studies of infant hip development to date have been limited by considering only the changes in appearance of a single ultrasound slice (Graf’s standard plane). We used 3D ultrasound (3DUS) to establish maturation curves of normal infant hip development, quantifying variation by age, sex, side, and anteroposterior location in the hip. Methods. We analyzed 3DUS scans of 519 infants (mean age 64 days (6 to 111 days)) presenting at a tertiary children’s hospital for suspicion of developmental dysplasia of the hip (DDH). Hips that did not require ultrasound follow-up or treatment were classified as ‘typically developing’. We calculated traditional DDH indices like α angle (α. SP. ), femoral head coverage (FHC. SP. ), and several novel indices from 3DUS like the acetabular contact angle (ACA) and osculating circle radius (OCR) using custom software. Results. α angle, FHC, and ACA indices increased and OCR decreased significantly by age in the first four months, mean α. SP. rose from 62.2° (SD 5.7°) to 67.3° (SD 5.2°) (p < 0.001) in one- to eight- and nine- to 16-week-old infants, respectively. Mean α. SP. and mean FHC. SP. were significantly, but only slightly, lower in females than in males. There was no statistically significant difference in DDH indices observed between left and right hip. All 3DUS indices varied significantly between anterior and posterior section of the hip. Mean 3D indices of α angle and FHC were significantly lower anteriorly than posteriorly: α. Ant. = 58.2° (SD 6.1°), α. Post. = 63.8° (SD 6.3°) (p < 0.001), FHC. Ant. = 43.0 (SD 7.4), and FHC. Post. = 55.4° (SD 11.2°) (p < 0.001). Acetabular rounding measured byOCR indices was significantly greater in the anterior section of the hip (p < 0.001). Conclusion. We used 3DUS to show that hip shape and normal growth pattern vary significantly between anterior and posterior regions, by magnitudes similar to age-related changes. This highlights the need for careful selection of the Graf plane during 2D ultrasound examination. Whole-joint evaluation by obtaining either 3DUS or manual ‘sweep’ video images provides more comprehensive DDH assessment. Cite this article: Bone Jt Open 2022;3(11):913–923


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_9 | Pages 1 - 1
1 Aug 2015
Solomon E Shortland A Lucas J
Full Access

The standard approach of diagnosing and monitoring scoliosis involves using the Cobb angle from posteroanterior (PA) radiograph. This approach has two key limitations: 1) It involves exposing the patients to ionising radiation during a period of heightened radiosensitivity. 2) The 2D x-ray image is a projection image of a 3D deformity and the Cobb angle represents only lateral rotation. 3DUS would overcome both these limitations.

We developed a 3DUS system by combining motion capture technology, a conventional 2D ultrasound scanner and bespoke software. An ex vivo experiment and a pilot clinical study were carried out to demonstrate the system's ability in identifying vertebrae landmarks and quantifying the curvature. For the ex vivo validation, a spine phantom was created by 3D-printing a segmented abdo-pelvis CT scan. The spine phantom was then scanned using 3DUS and the level of agreement in the dimensions measured using 3DUS and CT was assessed. An 11 year old female with adolescent idiopathic scoliosis (AIS) was scanned with 3DUS. The SP co-ordinates were projected on a plane of best-fit to compare the curvature angle from 3DUS with the Cobb angle from the x-ray image.

The spinous (SP), transverse processes and the laminae demonstrated high echogenicity and were easily identifiable. The difference between the spine phantom inter-SP dimension measurements made in 3DUS and CT was <2.5%. The PA x-ray of the AIS patient revealed 47° (L4-T11) and 52° (T6-T11) curves. 3DUS was able to represent the deformity in 3D revealing complex curvatures in all planes. The curvature angle from derived from 3DUS for the L4-T11 and T6-T11 curves were 132° (48°) and 125° (55°) respectively.

The results of this pilot study demonstrate 3DUS as a promising tool for imaging spine curvature


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 195 - 195
1 Apr 2005
Pasquali C Moalli S
Full Access

The cause of intermetatarsal neuromas is unclear even if there is a mechanically induced degenerative neuropathy of the intermetatarsal nerve. Treatment of Morton’s neuroma includes conservative methods such as steroid or local anaesthetic injection, orthotic devices and surgical therapy. Surgical therapy has a reported failure rate of between 7% and 24%, depending on the case histories. Dockery in 1999 and Masala et al. in 2001 presented their results on alcoholisation of Morton’s neuroma. The aim of this study is to prove the reproducibility of the aforementioned procedure and its results.

Between December 2001 and March 2004, 30 patients with Morton’s neuroma were examined with US and treated with alcohol injections under US guidance by the same operator. Among these 23 were women and seven men with age ranging between 37 and 70 years. Fifteen patients presented with more than one neuroma in the same foot or in both feet. The standard US was followed by a 3D US in order to extend the diagnosis in treated patients. Alcohol-sclerosing intralesional treatment was performed in 45 neuromas. The treatment consists of an injection cycle (minimum 1, maximum 4), composed of 50% ethyl alcohol (95%) and 50% of a 2% aqueous solution of carbocaine. A total of 90 injections were performed, with an average of two for each neuroma. The patients were examined after the treatment by both authors. On 31 (69%) neuromas, the alcohol-sclerosing intralesional treatment was successful; 14 (31%) neuromas had only a partial improvement and therefore the patients underwent a surgical excision. No procedure-related complications were observed.

The results of this study indicate that, even considering the failure rate, compared to surgery the alcoholisation treatment of neuroma under US guidance is a valuable conservative procedure because of its low morbidity and cost-effectiveness. Alcoholisation under US guidance thus could be a useful tool for orthopaedic surgeons in order to determine whether surgical excision is really necessary.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 19 - 19
1 Sep 2012
Guy P Hacihaliloglu I Abugharbieh R Hodgson A
Full Access

Purpose

Radiographs are the most common imaging modality used to guide orthopaedic interventions. Ultrasound (US) imaging offers potential advantages for intraoperative imaging by its portability and ability to produce real-time 2D or 3D images without radiation to either the patient or surgical team. Our objective in this study was to determine in a live emergency room setting, if a newly-developed image processing method for 3D US would allow us to accurately extract (reproduce) the surfaces of fractured bones.

Method

We obtained both CT scans and US images from consenting patients admitted to our Level 1 Trauma Centre for radius or pelvic fractures clinically requiring a CT scan. All US examinations in this clinical study were performed with a GE Voluson 730 machine with a 3D RSP5-12 transducer (a mechanized probe in which a linear array transducer is swept through an arc range of 20). Dorsal, volar, and radial views were obtained in the case of radial fractures and iliac crest views in the case of pelvic fractures.

The bone surfaces on CT were extracted using a thresholding algorithm [1]. Standard, clinical 3D reconstructions were also created using GE Voxtool 4.0.1 to serve as a qualitative comparison.

The US images were processed using the phase-processing algorithm described in [2] then registered to the CT images using a manually-supervised anatomical landmark-based rigid registration algorithm. The quality of the resulting surface matching was evaluated by computing the root mean square distance between the two surface representations [2] and by inter-observer agreement of the registered images to the clinical renderings.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 56 - 56
1 Feb 2016
Anas EMA Seitel A Rasoulian A St John P Pichora D Darras K Wilson DW Lessoway V Hacihaliloglu I Mousavi P Rohling R Abolmaesumi P
Full Access

Percutaneous fixation of scaphoid fractures has become popular in recent years, mainly due to its reduced complexity compared to open surgical approaches. Fluoroscopy is currently used as guidance for this percutaneous approach, however, as a projective imaging modality, it provides only a 2D view of the complex 3D anatomy of the wrist during surgery, and exposes both patient and physician to harmful X-ray radiation. To avoid these drawbacks, 3D ultrasound has been suggested to provide imaging for guidance as a widely available, real-time, radiation-free and low-cost modality. However, the blurred, disconnected, weak and noisy bone responses render interpretation of the US data difficult so far. In this work, we present the integration of 3D ultrasound with a statistical wrist model to allow development of an improved ultrasound-based guidance procedure. For enhancement of bone responses in ultrasound, a phase symmetry based approach is used to exploit the symmetry of the ultrasound signal around the expected bone location. We propose an improved estimation of the local phase symmetry by using the local spectrum variation of the ultrasound image. The statistical wrist model is developed through a group-wise registration based framework in order to capture the major modes of shape and pose variations across 30 subjects at different wrist positions. Finally, the statistical wrist model is registered to the enhanced ultrasound bone surfaces using a probabilistic registration approach. Feasibility experiments are performed using two volunteer wrists, and the results are promising and warrant further development and validation to enable ultrasound guided percutaneous scaphoid fracture reduction


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 30 - 30
1 Aug 2013
Amir-Khalili A Abugharbieh R Hodgson A
Full Access

Background. Previously, we demonstrated the effectiveness of phase symmetry (PS) features for segmentation and localisation of bone fractures in 3D ultrasound for the purpose of orthopedic fracture reduction surgery. We recently proposed a novel real-time image-processing method of bone surface extraction from local phase features of clinical 3D B-mode ultrasound data. We are presenting a computational study and outline planned future developments for integration into a computer aided orthopedic surgery framework. Methods. Our image-processing pipeline was implemented on three platforms: (1) using an existing PS extraction C++ algorithm on a dual processor machine with two Xeon x5472 CPUs @ 3GHz with 8GB of RAM, (2) using our proposed method implemented in MATLAB running on the same machine as in (1), and (3) CUDA implementation of our method on a professional GPU (Nvidia Tesla c2050). Results. We ran these three implementations 20 times each on 128×128×128 scans of the iliac crest in live subjects and repeated the processing for 15 combinations of filter parameters. On average, the C++ implementation took 1.93s per volume, the MATLAB implementation 1.28s, and the GPU implementation 0.08s. Overall, our GPU implementation is between 15 and 25 times faster than the state-of-the-art method. Conclusions. Implementing our algorithm on a professional grade GPU produced dramatic computational improvements, enabling full 3D datasets to be processed in an average time of under 100ms, which, if proven in a clinical system, would allow for near-realtime computation. We are currently implementing our algorithm on an open research sonography platform (Ultrasonix Medical Corporation). High-powered graphic cards can easily be integrated into the open architecture of this system, thus enabling GPU computation on diagnostic medical and research ultrasound devices. Clinical Relevance. We intend to use this platform within a surgical environment for accurate and automatic detection of fractures and as an integral part of our developing computer aided surgery pipeline, in which we use PS features to register intra-operative ultrasound to pre-operative computed tomography images


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 6 - 6
1 Aug 2013
Amir-Khalili A Abugharbieh R Hodgson AJ
Full Access

Previously, we demonstrated the effectiveness of phase symmetry (PS) features for segmentation and localisation of bone fractures in 3D ultrasound for the purpose of orthopaedic fracture reduction surgery. We recently proposed a novel real-time image-processing method of bone surface extraction from local phase features of clinical 3D B-mode ultrasound data. We are presenting a computational study and outline of planned future developments for integration into a computer aided orthopaedic surgery framework. Our image-processing pipeline was implemented on three platforms: (1) using an existing PS extraction C++ algorithm on a dual processor machine with two Xeon x5472 CPUs @ 3GHz with 8GB of RAM, (2) using our proposed method implemented in MATLAB running on the same machine as in (1), and (3) CUDA implementation of our method implemented on a professional GPU (Nvidia Tesla c2050). We ran these three implementations 20 times each on 128×128×128 scans of the iliac crest in live subjects and repeated the processing for 15 combinations of filter parameters. On average, the C++ implementation took 1.93s per volume, the MATLAB implementation 1.28s, and the GPU implementation 0.08s. Overall, our GPU implementation is between 15 and 25 times faster than the state-of-the-art method. Implementing our algorithm on a professional grade GPU produced dramatic computational improvements, enabling full 3D datasets to be processed in an average time of under 100ms, which, if proven in a clinical system, would allow for near real time computation. We are currently implementing our algorithm on an open research sonography platform (Ultrasonix Medical Corporation). High-powered graphic cards can easily be integrated into the open architecture of this system, thus enabling GPU computation on diagnostic medical and research ultrasound devices. We intend to use this platform within a surgical environment for accurate and automatic detection of fractures and as an integral part of our developing computer aided surgery pipeline, in which we use PS features to register intra-operative ultrasound to pre-operative computed tomography images


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 520 - 520
1 Aug 2008
Gough M Fry N McNee A Shortland A
Full Access

Purpose of study: To compare the medial gastrocnemius (MG) muscle belly length and volume in children with spastic diplegic cerebral palsy (SDCP) with that of normally developing (ND) children, and to assess the effect of gastrocnemius recession (GR) on MG muscle belly length and volume in the SDCP group. Method: The MG muscle belly length and volume at the resting ankle angle were assessed with 3D ultrasound in 10 ND children, mean age 9.4 years, and in 7 children (9 limbs) with SDCP (mean age 8.1 years) who had fixed equinus deformities (mean 24 degrees). The children with SDCP were assessed just before, and at 7 weeks and 1 year after GR surgery. Muscle length was normalised to fibular length, and muscle volume was normalised to body mass. Results: In both the ND and SDCP groups, muscle length was significantly related to fibular length (p=0.001) and muscle volume was significantly related to body mass (p< 0.001). The MG in the SDCP group had a mean reduction in normalised length of 19% and in normalised volume of 59% when compared to the ND group (p< 0.001). GR surgery lead to a further reduction in MG length (p=0.014) and a mean reduction of MG volume of 10% at 7 weeks (p=0.025). However, there was an increase in muscle volume of 39% (24% increase compared to the preoperative assessment) at 1 year following surgery (p< 0.001). Conclusions: The MG belly is significantly shorter and thinner in children with SDCP compared to ND children. GR surgery reduces MG length but leads to an improvement in MG volume and thus in the ability of the MG to generate power


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 55 - 55
1 Aug 2013
Buchan L Hacihaliloglu I Ellis R Gilbart M Wilson D
Full Access

Introduction. Bony deformities in the hip that cause femoroacetabular impingement (FAI) can be resected in order to delay the onset of osteoarthritis and improve hip range of motion. However, achieving accurate osteoplasty arthroscopically is challenging because the narrow hip joint capsule limits field of view. Recently, image-based navigation using a preoperative plan has been shown to improve the accuracy of femoral bone surfaces following arthroscopic osteoplasty for FAI. The current standard for intraoperative monitoring, 3D x-ray fluoroscopy, is accurate at the initial registration step to within 0.8±0.5mm but involves radiation. Intraoperative 3D ultrasound (US) is a promising radiation-free alternative for providing real-time visual feedback during FAI osteoplasty. The objective was to determine if intraoperative 3D US of the femoral head/neck region can be registered to a CT-based preoperative plan with comparable accuracy to fluoroscopic navigation in order to visualise progress during arthroscopic FAI osteoplasty. Methods. The experiment used a plastic femur model that had a cam deformity on the femoral head/neck. Thirty metal fiducial markers were placed on the US-accessible anterior and lateral surfaces of the femur. A CT image was acquired and reconstructed, then used to develop a preoperative plan for resection of the cam deformity. Twenty-two sets of 3D US data were then gathered from the phantom using a clinical ultrasound machine and 3D transducer while the phantom was submerged in water. US surfaces from the anterior/lateral regions of the femur were extracted using a recently proposed image processing algorithm. Fiducials in the US volume were manually registered to corresponding CT fiducials to provide a reference standard registration. The reference standard fiducial registration error (FRE) was measured as the average distance between corresponding fiducials. After fiducial-based registration, each US surface was randomly misaligned and re-registered using a coherent point-drift algorithm. The resulting surface registration error (SRE) was measured using average distance between US and CT surfaces. Finally, a plastic model of the preoperative cam deformity resection plan was 3D-printed to represent the postoperative femur. Five US scans were acquired of the postoperative model near the femoral head/neck. Each US scan was initialised for 20 trials using three reference points, and then registered using coherent point drift. Surgical outcome accuracy was reported using final surface registration error (fSRE). Results. The reference standard FRE was 0.41±0.19mm. The distance between surfaces following misalignment and re-registration for all 2200 automated registration trials was similarly small (SRE = 0.31±0.04mm) and well below the required clinical limit. Lastly, the postoperative model was accurately registered to corresponding US scans (fSRE = 0.58±0.07mm). Qualitative visualisation showed good surface matching following US to CT registration. Conclusion. Initial registration between intraoperative 3D US and preoperative CT is critical for accurate visualisation of surgical progress during FAI osteoplasty. Given spatial initialisation, the achievable registration accuracy of 3D US to CT is 0.31±0.04mm (SRE) which is well within the fluoroscopy standard, 0.8±0.5mm. The results suggest strong potential for ultrasound to guide computer-assisted arthroscopic FAI osteoplasty


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims

The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty.

Methods

Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output.


Bone & Joint Research
Vol. 8, Issue 7 | Pages 304 - 312
1 Jul 2019
Nicholson JA Tsang STJ MacGillivray TJ Perks F Simpson AHRW

Objectives

The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management.

Methods

A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”.