Aims. Controversy exists as to what should be considered a safe resection margin to minimize local recurrence in high-grade pelvic chondrosarcomas (CS). The aim of this study is to quantify what is a safe margin of resection for high-grade CS of the pelvis. Methods. We retrospectively identified 105 non-metastatic patients with high-grade pelvic CS of bone who underwent surgery (limb salvage/amputations) between 2000 and 2018. There were 82 (78%) male and 23 (22%) female patients with a mean age of 55 years (26 to 84). The majority of the patients underwent limb salvage surgery (n = 82; 78%) compared to 23 (22%) who had amputation. In total, 66 (64%) patients were grade 2 CS compared to 38 (36%) grade 3 CS. All patients were assessed for stage, pelvic anatomical classification, type of resection and reconstruction, margin status, local recurrence, distant recurrence, and overall survival. Surgical margins were stratified into millimetres: < 1 mm; > 1 mm but <
The purpose of balancing in total knee surgery is to achieve smooth tracking of the knee over a full range of flexion without excessive looseness or tightness on either the lateral or medial sides. Balancing is controlled by the alignment of the bone cuts, the soft tissue envelope, and the constraint of the total knee. Recently, Instrumented Tibial Trials (OrthoSensor) which measure and display the location and magnitude of the forces on the lateral and medial condyles, have been introduced, offering the possibly of predictive and quantitative balancing. This paper presents the results of experiments on 10 lower limb specimens, where the effects of altering the bone cuts or the femoral component size were measured. A special leg mounting rig was fixed to a standard operating table. A boot was strapped to the foot, and the boot tracked along a horizontal rail to allow flexion-extension. The initial bone cuts were carried out by measured resection using a navigation system. The trial femoral component and the instrumented tibial trial were inserted, and the following tests carried out:. Sag Test; foot lifted up, the trial thickness chosen to produce zero flexion. Heel Push Test; heel moved towards body to maximum flexion. Varus-Valgus Test, AP and IXR Tests were also carried out, but not discussed here. For an initial state of the knee, close to balanced, the lateral and medial contact forces were recorded for the full flexion range. The mean value of the contact forces per condyle was 77.4N, the mean in early flexion (0–60 deg) was 94.2N, and the mean in late flexion (60–120 deg) was 55.7N. The difference was due to the effect of the weight of the leg. One of the following Surgical Variables was then implemented, and the contact forces again recorded.
. 1. Distal femoral cut;
Purpose of the study: The purpose of this prospective study was to evaluated the risk of fracture of 22.
Aims. The aim of this study was to identify the origin and development of the threshold for surgical intervention, highlight the consequences of residual displacement, and justify the importance of accurate measurement. Methods. A systematic review of three databases was performed to establish the origin and adaptations of the threshold, with papers screened and relevant citations reviewed. This search identified papers investigating functional outcome, including presence of arthritis, following injury. Orthopaedic textbooks were reviewed to ensure no earlier mention of the threshold was present. Results. Knirk and Jupiter (1986) were the first to quantify a threshold, with all their patients developing arthritis with >
Open reduction and internal fixation using plate osteosynthesis for midshaft clavicle fractures is often associated with hardware prominance. Although clinical studies have suggested a role for the use of thinner 2.7mm plates as a means of increasing cosmetic acceptability this still remains an area of controversy. We investigated the effect of plate size (2.7mm vs. 3.5mm), plate treatment (annealed vs. cold worked) and number of screws on the stiffness and yield point. Twenty-four synthetic clavicles were randomly divided into four treatment groups - Synthes (Synthes, Paoli, PA) 2.7mm cold-worked calcaneal reconstruction plate with six or eight bicortical screws; 3.5mm LCP reconstruction plate (RP) and 3.5mm LCP pre-contoured superior-anterior clavicle plate (PCSA). After measuring the baseline stiffness of the intact specimens, all clavicles were plated, a wedge-shaped inferior defect was created and testing performed using a cantilever-bending model. Statistical analysis was performed using one-way ANOVA with Tukey's multiple comparison test with significance set at a P value <0.05.Background
Methods
Aims. The aim of this study was to investigate the association between fracture displacement and survivorship of the native hip joint without conversion to a total hip arthroplasty (THA), and to determine predictors for conversion to THA in patients treated nonoperatively for acetabular fractures. Methods. A multicentre cross-sectional study was performed in 170 patients who were treated nonoperatively for an acetabular fracture in three level 1 trauma centres. Using the post-injury diagnostic CT scan, the maximum gap and step-off values in the weightbearing dome were digitally measured by two trauma surgeons. Native hip survival was reported using Kaplan-Meier curves. Predictors for conversion to THA were determined using Cox regression analysis. Results. Of 170 patients, 22 (13%) subsequently received a THA. Native hip survival in patients with a step-off ≤
Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, +
Aims. This study aimed to gather insights from elbow experts using the Delphi method to evaluate the influence of patient characteristics and fracture morphology on the choice between operative and nonoperative treatment for coronoid fractures. Methods. A three-round electronic (e-)modified Delphi survey study was performed between March and December 2023. A total of 55 elbow surgeons from Asia, Australia, Europe, and North America participated, with 48 completing all questionnaires (87%). The panellists evaluated the factors identified as important in literature for treatment decision-making, using a Likert scale ranging from "strongly influences me to recommend nonoperative treatment" (1) to "strongly influences me to recommend operative treatment" (5). Factors achieving Likert scores ≤ 2.0 or ≥ 4.0 were deemed influential for treatment recommendation. Stable consensus is defined as an agreement of ≥ 80% in the second and third rounds. Results. Of 68 factors considered important in the literature for treatment choice for coronoid fractures, 18 achieved a stable consensus to be influential. Influential factors with stable consensus that advocate for operative treatment were being a professional athlete, playing overhead sports, a history of subjective dislocation or subluxation during trauma, open fracture, crepitation with range of movement, >
Accurate cup placement in total hip arthroplasty (THA) for the patients with developmental dysplasia of the hip (DDH) is one of the challenges due to distinctive bone deformity. Robotic-arm assisted system have been developed to improve the accuracy of implant placement. This study aimed to compare the accuracy of robotic-arm assisted (Robo-THA), CT-based navigated (Navi-THA), and manual (M-THA) cup position and orientation in THA for DDH. A total of 285 patients (335 hips) including 202 M-THAs, 45 Navi-THAs, and 88 Robo-THA were analyzed. The choice of procedure followed the patient's preferences. Horizontal and vertical center of rotation (HCOR and VCOR) were measured for cup position, and radiographic inclination (RI) and anteversion (RA) were measured for cup orientation. The propensity score-matching was performed among three groups to compare the absolute error from the preoperative target position and angle. Navi-THA showed significantly smaller absolute errors than M-THA in RI (3.6° and 5.4°) and RA (3.8° and 6.0°), however, there were no significant differences between them in HCOR (2.5 mm and 3.0 mm) or VCOR (2.
Aims. Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model. Methods. Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods. Results. Impaction force was reduced by 89% and 53% for vibratory insertion in 15 and 30 PCF foams, respectively. Both methods positioned the component with polar gaps under
Recently, a new generation of superior clavicle plates was developed featuring the variable-angle locking technology for enhanced screw positioning and optimized plate-to-bone fit design. On the other hand, mini-fragment plates used in dual plating mode have demonstrated promising clinical results. However, these two bone-implant constructs have not been investigated biomechanically in a human cadaveric model. Therefore, the aim of the current study was to compare the biomechanical competence of single superior plating using the new generation plate versus dual plating with low-profile mini-fragment plates. Sixteen paired human cadaveric clavicles were assigned pairwise to two groups for instrumentation with either a
Critical-sized bone defects can result from trauma, inflammation, and tumor resection. Such bone defects, often have irregular shapes, resulting in the need for new technologies to produce suitable implants. Bioprinting is an additive manufacturing method to create complex and individualised bone constructs, which can already include vital cells. In this study, we established an extrusion-based printing technology to produce osteoinductive scaffolds based on polycaprolactone (PCL) combined with calcium phosphate, which is known to induce osteogenic differentiation of stem cells. The model was created in python based on the signed distance functions. The shape of the 3D model is a ring with a diameter of 20 mm and a height of 10 mm with a spongiosa-like structure. The interconnected irregular pores have a diameter of
Introduction. Osteoarthritis (OA) often results from joint misloading, which affects chondrocyte calcium signaling through mechano-sensitive receptors such as Piezo1, -2, and TRPV4. Activation of Piezo1, especially under inflammatory conditions, can trigger premature chondrocyte apoptosis. Intra-articular glucocorticoid therapy, while beneficial against inflammation and pain in osteoarthritis, may induce oxidative stress and chondrotoxicity at higher doses. This study aims to assess the effects of glucocorticoids, particularly triamcinolone, on chondrocyte elasticity and mechanosignaling. Method. Chondrocytes isolated from articular condyles obtained from patients undergoing knee replacement surgery (n= 5) were cultured for 7 days in triamcinolone acetonide (TA) at different concentrations (0.2µM – 2mM). Cytoskeletal changes were assessed by F-actin labeling. Cell elasticity was measured using atomic force microscopy (AFM). Labeling cells (n=6 patients) with the calcium-sensitive dye (Fluo-4) enabled monitoring changes in intracellular calcium fluorescence intensity during guided single-cell mechanical indentation (500 nN) by AFM. Result. Cell exposure to
Aims. There has been an increasing use of early operative fixation for scaphoid fractures, despite uncertain evidence. We conducted a meta-analysis to evaluate up-to-date evidence from randomized controlled trials (RCTs), comparing the effectiveness of the operative and nonoperative treatment of undisplaced and minimally displaced (≤
Ligament reconstruction following multi-ligamentous knee injuries involves graft fixation in bone tunnels using interference screws (IS) or cortical suspensory systems. Risks of IS fixation include graft laceration, cortical fractures, prominent hardware, and inability to adjust tensioning once secured. Closed loop suspensory (CLS) fixation offers an alternative with fewer graft failures and improved graft-to-tunnel incorporation. However, graft tensioning cannot be modified to accommodate errors in tunnel length evaluation. Adjustable loop suspensory (ALS) devices (i.e., Smith & Nephew Ultrabutton) address these concerns and also offer the ability to sequentially tighten each graft, as needed. However, ALS devices may lead to increased graft displacement compared to CLS devices. Therefore, this study aims to report outcomes in a large clinical cohort of patients using both IS and CLS fixation. A retrospective review of radiographic, clinical, and patient-reported outcomes following ligament reconstruction from a Level 1 trauma centre was completed. Eligible patients were identified via electronic medical records using ICD-10 codes. Inclusion criteria were patients 18 years or older undergoing ACL, PCL, MCL, and/or LCL reconstruction between January 2018 and 2020 using IS and/or CLS fixation, with a minimum of six-month post-operative follow-up. Exclusion criteria were follow-up less than six months, incomplete radiographic imaging, and age less than 18 years. Knee dislocations (KD) were classified using the Schenck Classification. The primary outcome measure was implant removal rate. Secondary outcomes were revision surgery rate, deep infection rate, radiographic fixation failure rate, radiographic malposition, Lysholm and Tegner scores, clinical graft failure, and radiographic graft failure. Radiographic malposition was defined as implants over 5 mm off bone or intraosseous deployment of the suspensory fixation device. Clinical graft failure was defined as a grade II or greater Lachman, posterior drawer, varus opening at 20° of knee flexion, and/or valgus opening at 20° of knee flexion. Radiographic failure was defined when over 5
Aims. This study aimed to quantify the shoulder kinematics during an apprehension-relocation test in patients with anterior shoulder instability (ASI) and glenoid bone loss using the radiostereometric analysis (RSA) method. Kinematics were compared with the patient’s contralateral healthy shoulder. Methods. A total of 20 patients with ASI and > 10% glenoid bone loss and a healthy contralateral shoulder were included. RSA imaging of the patient’s shoulders was performed during a repeated apprehension-relocation test. Bone volume models were generated from CT scans, marked with anatomical coordinate systems, and aligned with the digitally reconstructed bone projections on the RSA images. The glenohumeral joint (GHJ) kinematics were evaluated in the anteroposterior and superoinferior direction of: the humeral head centre location relative to the glenoid centre; and the humeral head contact point location on the glenoid. Results. During the apprehension test, the centre of the humeral head was 1.0 mm (95% CI 0.0 to 2.0) more inferior on the glenoid for the ASI shoulder compared with the healthy shoulder. Furthermore, the contact point of the ASI shoulder was 1.4 mm (95% CI 0.3 to 2.5) more anterior and
Abstract. Objectives. The fidelity of a 3D model created using image segmentation must be precisely quantified and evaluated for the model to be trusted for use in subsequent biomechanical studies such as finite element analysis. The bones within the ankle joint vary significantly in size and shape. The purpose of this study was to test the hypothesis that the accuracy and reliability of a segmented bone geometry is independent of the particular bone being measured. Methods. Computed tomography (CT) scan data (slice thickness 1 mm, pixel size 808±7 µm) from three anonymous patients was used for the development of the ankle geometries (consisting of the tibia, fibula, talus, calcaneus, and navicular bones) using Simpleware Scan IP software (Synopsys, Exeter, UK). Each CT scan was segmented 4 times by an inexperienced undergraduate, resulting in a total of 12 geometry assemblies. An experienced researcher segmented each scan once, and this was used as the ‘gold standard’ to quantify the accuracy. The solid bone geometries were imported into CAD software (Inventor 2023, Autodesk, CA, USA) for measurement of the surface area and volume of each bone, and the distances between bones (tibia to talus, talus to navicular, talus to calcaneus, and tibia to fibula) were carried out. The intra-class coefficient (ICC) was used to assess intra-observer reliability. Bland Altman plots were employed as a statistical measure for criteria validity (accuracy) [1]. Results. The average ICC score was 0.93, which is regarded as a high reliability score for an inexperienced user. The talus to navicular and talus to tibia separations, which had the smallest distances, showed a slight decrease in reliability and this was observed for all separations shorter than
Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was
Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including spinopelvic mobility. The absolute error for achieving the planned horizontal COR was median 1.4 mm (interquartile range (IQR) 0.87 to 3.42) in RO THA versus 4.3 mm (IQR 3 to 6.8; p < 0.001); vertical COR mean 0.91 mm (SD 0.73) in RO THA versus
The Pivot-shift test is a clinical test for knee instability for patinets with Anterior cruciate ligament (ACL), however the test has low inter-observer reliability. Dynamic radiostereometry (dRSA) imaging is a highly precise method for objective evaluation of joint kinematics. The purpose of the study was to quantify precise knee kinematics during Pivot-shift test by use of the non-invasive dynamic RSA imaging. Eight human donor legs with hemipelvis were evaluated. Ligament lesion intervention of the ACL was performed during arthroscopy and anterolateral ligament (ALL) section was performed as a capsular incision. Pivot-shift test examination was recorded with dRSA on ligament intact knees, ACL-deficient knees and ACL+ALL-deficient knees. A Pivot-shift pattern was identifyable after ligament lesion as a change in tibial posterior drawer velocity from 7.8 mm/s in ligament intact knees, to 30.4 mm/s after ACL lesion, to 35.1 mm/s after combined ACL-ALL lesion. The anterior-posterior drawer excursion increased from