header advert
Results 1 - 31 of 31
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 40 - 40
1 Apr 2019
Vigdorchik J Cizmic Z Elbuluk A Jerabek SA Paprosky W Sculco PK Meere P Schwarzkopf R Mayman DJ
Full Access

Introduction

Computer-assisted hip navigation offers the potential for more accurate placement of hip components, which is important in avoiding dislocation, impingement, and edge-loading. The purpose of this study was to determine if the use of computer-assisted hip navigation reduced the rate of dislocation in patients undergoing revision THA.

Methods and Materials

We retrospectively reviewed 72 patients who underwent computer-navigated revision THA [Fig. 1] between January 2015 and December 2016. Demographic variables, indication for revision, type of procedure, and postoperative complications were collected for all patients. Clinical follow-up was performed at 3 months, 1 year, and 2 years. Dislocations were defined as any episode that required closed or open reduction or a revision arthroplasty. Data are presented as percentages and was analyzed using appropriate comparative statistical tests (z-tests and independent samples t- tests).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 102 - 102
1 Apr 2019
Cizmic Z Novikov D Sodhi N Meere P Vigdorchik J
Full Access

Introduction

Total joint arthroplasty is regarded as a highly successful procedure. However, patient outcomes and implant longevity require proper alignment and prosthesis position. Computer-assisted total knee arthroplasty (TKA) has been found to improve the accuracy of component positioning and reduce rates of revision, however there remains debate whether it provides improvements in patient reported outcomes (PROs). The purpose of our study was to compare PROs between computer-assisted and conventional TKA.

Methods

A retrospective review of all total knee arthroplasty patients was conducted using a single institution's FORCE database for reporting PROs. Knee Society Score (KSS), procedure satisfaction, physical component summary (PCS), and mental component summary (MCS) were compared between computer-assisted TKA and conventional TKA.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 1 - 1
1 Mar 2017
Meere P Walker P Salvadore G
Full Access

Introduction

Soft tissue balancing in total knee arthroplasty surgery may prove necessary to elevate patient satisfaction and functional outcome beyond the current fair average. A new generation of contact load sensors embedded in trial tibial liners provides quantification of loads, direction, and an indirect assessment of ligamentous tension. With this technology, quantified intra-operative balancing may potentially restore compartmental load distribution to a more physiological and functional degree.

Objective

1). To define a clinically useful target zone for balancing of the soft tissue envelope of knees at the time of surgery using numerical data from load sensors in tibial liner trial components. 2). To validate the boundaries of the target zone on a medial v. lateral contact load scatterplot with PROMs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 134 - 134
1 Mar 2017
Salvadore G Meere P Verstraete M Victor J Walker P
Full Access

INTRODUCTION

During TKA surgery, the usual goal is to achieve equal balancing between the lateral and medial side, which can be achieved by ligament releases or “pie crusting”. However little is known regarding a relationship between the balancing forces on the medial and lateral plateaus during TKA surgery, and the varus and valgus and rotational laxities when the TKA components are inserted. It seems preferable that the laxity after TKA is the same as for the normal intact knee. Hence the first aim of this study was to compare the laxity envelope of a native knee, with the same knee after TKA surgery. The second aim was to examine the relationship between the Varus-Valgus (VV) laxity and the contact forces on the tibial plateau.

METHODS

A special rig that reproduced surgical conditions and fit onto an operating table was designed (Figure 1) (Verstraete et al. 2015). The rig allows application of a constant varus/valgus moment, and an internal-external (IE) torque. A series of heel push tests under these loading conditions were performed on 12 non-arthritic half semibodies hip-to-toe cadaveric specimens. Five were used for method development. To measure laxities, the flexion angle, the VV and the IE angle were measured using a navigation system. After testing the native knee, a TKA was performed using the Journey II BCS implant, the navigation assuring correct alignments. Soft tissue balancing was achieved by measuring compressive forces on the lateral and medial condyles with an instrumented tibial trial (Orthosensor, Dania Beach, Florida). At completion of the procedure, the laxity tests were repeated for VV and IE rotation and the contact forces on the tibial plateau were recorded, for the full range of flexion.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 76 - 76
1 Mar 2017
Walker P Meere P Salvadore G Oh C Chu L
Full Access

INTRODUCTION

Ligament balancing aims to equalize lateral and medial gaps or tensions for optimal functional outcomes. Balancing can now be measured as lateral and medial contact forces during flexion (Roche 2014). Several studies found improved functional outcomes with balancing (Unitt 2008; Gustke 2014a; Gustke 2014b) although another study found only weak correlations (Meneghini 2016). Questions remain on study design, optimal lateral-medial force ratio, and remodeling over time. Our goals were to determine the functional outcomes between pre-op and 6 months post-op, and determine if there was a range of balancing parameters which gave the highest scores.

METHODS

This IRB study involved a single surgeon and the same CR implant (Triathlon). Fifty patients were enrolled age 50–90 years. A navigation system was used for alignments. Balancing aimed for equal lateral and medial contact forces throughout flexion, using various soft tissue releases (Meneghini 2013; Mihalko 2015). The patients completed a Knee Society evaluation pre-op, 4 weeks, 3 months and 6 months. The total (medial+lateral) force, and the medial/(medial+lateral) force ratio was calculated for 4 flexion angles and averaged. These were plotted against Pain, Satisfaction, Delta Function (postop – preop), and Delta Flexion Angle. The data was divided into 2 groups. 1. By balancing parameters. T-Test for differences in outcomes between the 2 groups. 2. By outcome parameters. T-Test for differences in Balancing Parameters between the two groups.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 71 - 71
1 Mar 2017
Verstraete M Meere P Salvadore G Victor J Walker P
Full Access

Introduction

A correct balancing of the knee following TKA surgery is believed to minimize instability and improve patient satisfaction. In that respect, trial components containing force sensors can be used. These force sensors provide insight in the medial/lateral force ratio as well as absolute contact forces. Although this method finds clinical application already, the target values for both the force magnitude and ratio under surgical conditions remain uncertain.

Methods

A total of eight non-arthritic cadaveric knees have been tested mimicking surgical conditions. Therefore, the specimens are mounted in a custom knee simulator (Verstraete et al., 2015). This simulator allows to test full lower limb specimens, providing kinematic freedom throughout the range of motion. Knee flexion is obtained by lifting the femur (thigh pull). Knee kinematics are simultaneously recorded by means of a navigation system and based on the mechanical axis of the femur and tibia.

In addition, the load transferred through the medial and lateral compartment of the knee is monitored. Therefore, a 2.4 mm thick sawing blade is used to machine a slot in the tibia perpendicular to the mechanical axis, at the location of the tibial cut in TKA surgery. A complete disconnection was thereby assured between the tibial plateau and the distal tibia. To fill the created gap, custom 3D printed shims were inserted (Fig. 1). Through their specific geometry, these shims create a load deviation between two pressure pads (Tekscan type 4011 sensor) seated on the medial and lateral side. Following the insertion of the shims, the knee was closed before performing the kinematic and kinetic tests.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 133 - 133
1 Mar 2017
Salvadore G Meere P Chu L Zhou X Walker P
Full Access

INTRODUCTION

There are many factors which contribute to function after TKA. In this study we focus on the effect of varus-valgus (VV) balancing measured externally. A loose knee can show instability (Sharkey 2014) while too tight, flexion can be limited. Equal lateral-medial balancing at surgery leads to a better result (Unitt 2008; Gustke 2014), which is generally the surgical goal. Indeed similar varus and valgus laxity angles have been found in most studies in vitro (Markolf 2015; Boguszewski 2015) and in vivo (Schultz 2007; Clarke 2016; Heesterbeek 2008). The angular ranges have been 3–5 degrees at 10–15 Nm of knee moment, females having the higher angles. The goal of this study was to measure the varus and valgus laxity, as well as the functional outcome scores, of two cohorts; well-functioning total knees after at least one year follow-up, and subjects with healthy knees in a similar age group to the TKR's. Our hypothesis was that the results will be equal in the two groups.

METHODS & MATERIALS

50 normal subjects average age 66 (27 male, 23 female) and 50 TKA at 1 year follow-up minimum average age 68 years (16 male, 34 female) were recruited in this IRB study. The TKA's were performed by one surgeon (PAM) of one TKA design, balancing by gap equalization. Subjects completed a KSS evaluation form to determine functional, objective, and satisfaction scores. Varus and valgus measurements were made using the Smart Knee Fixture (Figure 1)(Borukhov 2016) at 20 deg flexion with a moment of 10 Nm.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 150 - 150
1 Feb 2017
Meere P Salvadore G Chu L Zhou X Walker P
Full Access

INTRODUCTION

The role of soft tissue balancing in optimizing function and is gaining interest. Consistent soft tissue balancing has been aided by novel technologies that can quantify loads across the joint at the time of surgery. In theory, compressive load equilibrium should be correlated with ligamentous equilibrium between the medial and lateral collateral ligaments.

The authors propose to use the Coronal Angular Deviation Ratio (CADR) as a functional tool to quantify and track surgical changes in laxity of the collateral ligaments over time and correlate this ratio to validated functional scores and patient reported outcomes.

MATERIALS AND METHODS

The study is a prospective IRB approved clinical study with three cohorts: (1) a surgical prospective study group (n=112 knees in101 patients) with balanced compartmental loads (2) a matched control group of non-operated high function patients (n=50); (3) a matched control group of high function knee arthroplasty recipients (n=50). Standard statistical analysis method is applied. The testing is performed using a validated angular deviation measuring device. The output variables for this report consist of the maximum numerical angular change of the knee in the coronal plane at 10 degrees of flexion produced by a controlled torque application of 10 Nm in the varus and valgus (VV) directions. This is reported as a ratio (CADR=Varus deviation / Total deviation). The New Knee Society Score is used to track outcomes.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 53 - 53
1 Jan 2017
Verstraete M Meere P Salvadore G Victor J Walker P
Full Access

A correct ligament loading following TKA surgery is believed to minimize instability and improve patient satisfaction. The evaluation of the ligament stress or strain is however impractical in a surgical setting. Alternatively, tibial trial components containing force sensors have the potential to indirectly assess the ligament loading. These instrumented components quantify the medial and lateral forces in the tibiofemoral joint. Although this method finds clinical application already, the target values for both the force magnitude and medial / lateral force ratio under surgical conditions remain uncertain.

A total of eight non-arthritic cadaveric knees have been tested mimicking surgical conditions. Therefore, the specimens are mounted in a custom knee simulator. This simulator allows to test full lower limb specimens, providing kinematic freedom throughout the range of motion. Knee flexion is obtained by lifting the femur (thigh pull). Knee kinematics are simultaneously recorded by means of a navigation system and based on the mechanical axis of the femur and tibia.

In addition, the load transferred through the medial and lateral compartment of the knee is monitored. Therefore, a 2.4 mm thick sawing blade is used to machine a slot in the tibia perpendicular to the mechanical axis, at the location of the tibial cut in TKA surgery. A complete disconnection was thereby assured between the tibial plateau and the distal tibia. To fill the created gap, custom 3D printed shims were inserted. Through their specific geometry, these shims create a load deviation between two Tekscan pressure pads on the medial and lateral side. Following the insertion of the shims, the knee was closed before performing the kinematic and kinetic tests.

Seven specimens showed a limited varus throughout the range of motion (ranging from 1° to 7° varus). The other knee was in valgus (4° valgus). Amongst varus knees, the results were very consistent, indicating high loads in full extension. Subsequently, the loads decrease as the knee flexes and eventually vanishes on the lateral side. This leads to consistently high compartmental load ratios (medial load / total load) in flexion.

In full extension the screw-home mechanism results in increased loads, both medially and laterally. Upon flexion, the lateral loads disappear. This is attributed to slackening of the lateral collateral ligament, in turn linked to the femoral rollback and slope of the lateral compartment. The isometry of the medial collateral ligament contributes on the other hand to the near-constant load in the medial compartment. The above particularly applies for varus knees. The single valgus knee tested indicated a higher load transmission by the lateral compartment, potentially attributed to a contracture of the lateral structures.

With respect to TKA surgery, these findings are particularly relevant when considering anatomically designed implants. For those implants, this study concludes that a tighter medial compartment reflects that of healthy varus knees. Be aware however that in full extension, higher and up to equal loads can be acceptable for the medial and lateral compartment.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 96 - 96
1 Jan 2017
Salvadore G Verstraete M Meere P Victor J Walker P
Full Access

During TKA surgery, the usual goal is to achieve equal balancing between the lateral and medial side, which can be achieved by ligament releases or “pie crusting”. However little is known regarding a relationship between the balancing forces on the medial and lateral plateaus during TKA surgery, and the varus and valgus and rotational laxities when the TKA components are inserted. It seems preferable that the laxity after TKA is the same as for the normal intact knee. Hence the first aim of this study was to compare the laxity envelope of a native knee, with the same knee after TKA surgery. The second aim was to examine the relationship between the Varus-Valgus (VV) laxity and the contact forces on the tibial plateau.

A special rig that reproduced surgical conditions and fit onto an operating table was designed (Verstraete et al. 2015). The rig allows application of a constant varus/valgus moment, and an internal-external (IE) torque. A series of heel push tests under these loading conditions were performed on 12 non-arthritic half semibodies hip-to-toe cadaveric specimens. Five were used for method development. To measure laxities, the flexion angle, the VV and the IE angle were measured using a navigation system. After testing the native knee, a TKA was performed using the Journey II BCS implant, the navigation assuring correct alignments. Soft tissue balancing was achieved by measuring compressive forces on the lateral and medial condyles with an instrumented tibial trial (Orthosensor, Dania Beach, Florida). At completion of the procedure, the laxity tests were repeated for VV and IE rotation and the contact forces on the tibial plateau were recorded, for the full range of flexion.

The average of the varus-valgus and the IE laxity envelope is plotted for the native (yellow), the TKA (pink) and the overlap between the two (orange). The average for six specimens of the contact force ratio (medial/medial+lateral force) during the varus and valgus test is plotted as a function of the laxity for each flexion angle.

The Journey II implant replicated the VV laxity of the native knee except for up to 3 degrees more valgus in high flexion. For the IE, the TKA was equal in internal rotation, but up to 5 degrees more constrained in varus in mid range. Plotting contact force ratio against VV laxity, as expected during the varus test the forces were clustered in a 0.85–0.95 ratio, implying predominant medial force with likely lateral lift-off. For the valgus test, the force ratio is more spread out, with all the values below 0.6. This could be due to the different stiffness of the MCL and LCL ligaments which are stressed during the VV test. During both tests the laxity increases progressively with flexion angle. Evidently the geometry knee reproduces more lateral laxity at higher flexion as in the anatomic situation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 93 - 93
1 Jan 2017
Salvadore G Meere P Chu L Zhou X Walker P
Full Access

There are many factors which contribute to function after TKA. In this study we focus on the effect of varus-valgus (VV) balancing measured externally. A loose knee can show instability (Sharkey 2014) while too tight, flexion can be limited. Equal lateral-medial balancing at surgery leads to a better result (Unitt 2008; Gustke 2014), which is generally the surgical goal. Indeed similar varus and valgus laxity angles have been found in most studies in vitro (Markolf 2015; Boguszewski 2015) and in vivo (Schultz 2007; Clarke 2016; Heesterbeek 2008). The angular ranges have been 3–5 degrees at 10–15 Nm of knee moment, females having the higher angles. The goal of this study was to measure the varus and valgus laxity, as well as the functional outcome scores, of two cohorts; well-functioning total knees after at least one year follow-up, and subjects with healthy knees in a similar age group to the TKR's. Our hypothesis was that the results will be equal in the two groups.

50 normal subjects average age 66 (27 male, 23 female) and 50 TKA at 1 year follow-up minimum average age 68 years (16 male, 34 female) were recruited in this IRB study. The TKA's were performed by one surgeon (PAM) of one TKA design, balancing by gap equalization. Subjects completed a KSS evaluation form to determine functional, objective, and satisfaction scores. Varus and valgus measurements were made using the Smart Knee Fixture (Borukhov 2016) at 20 deg flexion with a moment of 10 Nm.

The statistical results demonstrated that there was no significant difference in either varus or valgus laxity between the two groups (p= 0.9, 0.3 respectively). Pearson's correlation coefficient between varus and valgus laxity of the healthy group was 0.42, while for the TKA group was 0.55. In both cohorts varus laxity was significant higher than valgus laxity (p= 0.001e−5 for healthy subjects and p=0.0001 for TKA). The healthy group had higher functional and objective KSS scores (p= 0.005e−4, and p=0.004e−5 respectively), but the same satisfaction scores as the TKA (p=0.3). No correlation was found between the total laxity of the TKA group and the KSS scores (functional, objective and satisfaction). Total laxity in females was significantly higher than in males in the healthy group, but no differences was found in the TKA group.

The hypothesis of equal varus and valgus angles in the 2 groups was supported. The larger varus angle implied a less stiff lateral collateral compared with the medial collateral. If the TKA's were balanced equally at surgery, it is possible there was ligament remodeling over time. However the functional scores were inferior for the TKA compared with normal. This finding has not been highlighted in the literature so far. The causes could include weak musculature (Yoshida 2013), non-physiologic kinematics due to the TKA design, or the use of rigid materials in the TKA. The result presents a challenge to improve outcomes after TKA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 107 - 107
1 May 2016
Verstraete M Salvadore G Victor J Meere P Walker P
Full Access

Total knee arthroplasty can largely impact the functioning of a knee. To minimize the impact of surgery and increase patient satisfaction, it is believed that restoring knee stability and control of the laxity has the potential to improve surgical outcome. In that respect, it is hypothesized that a well-balanced knee restores the native knee's laxity and stability, whereas unbalanced conditions result in an increased laxity and instability. This study intends to precisely evaluate knee laxity and stability in a cadaveric model in order to improve the clinical evaluation of the knee laxity under surgical conditions. This paper provides insight in the design considerations and methodology of a novel knee simulator and the preliminary results

In a first phase, a new knee simulator has therefore been developed. This simulator allows quantifying the knee kinematics and surgical feel at the time of surgery in a laboratory environment. More specifically, full lower limb specimens can be mounted in the simulator. This overcomes the need for disarticulation at the hip and ankle, often reported in cadaveric testing. The latter is believed to potentially release the tension in the knee and should therefore be avoided. Note that in respect to surgical conditions no muscle activation is considered for this simulator.

To facilitate a repeatable and unbiased evaluation of the knee kinematics, it is important that the knee simulator provides full kinematic freedom to the tested knee specimen. To obtain six degrees of freedom, a dedicated hip and ankle setup has been created (figure 1). The hip setup constrains the hip joint to a single axis hinge joint around the femoral head center. The remaining five degrees of freedom are built into the ankle setup. More specifically, the ankle setup has two translational degrees of freedom and full rotational freedom. The translational freedom is provided along the specimen's proximal-distal axis and medio-lateral axis. The rotational freedom is provided at a single point, using a ball in socket joint located along the mechanical axis of the tibia. The translation along the proximal-distal axis is thereby actively controlled by the operator, simulating heel push conditions. In addition to studying the neutral path kinematics, the presented simulator allows evaluating the laxity boundaries throughout the range of motion. Therefore, a constant internal/external torque can be applied to the tibia. Alternatively, a constant varus/valgus moment can be simulated.

Second, following the design and construction of this simulator, a set of ten cadaveric knees has been tested on this simulator, both before and after TKA surgery. For the native knees, the results of these tests confirm the kinematic freedom provided to the tested knee. In addition, the laxity envelope around the neutral path can be realistically evaluated and quantified.

Conclusion

Design and evaluation of new knee simulator that allows synchronous studying of the knee kinematics, contact loads and tensile forces, under neutral conditions and extreme varus/valgus moment or internal/external tibial torque.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 120 - 120
1 May 2016
Walker P Meere P Borukhov I Bell C
Full Access

PURPOSE

Soft tissue balancing can be achieved by using spacer blocks, by distractors which measure tensile forces, or by instrumented devices which measure the forces on the lateral and medial condyles. However there is no quantitative method for assessment of balancing at clinical follow-up; to address this, we developed a Smart Knee Fixture (SKF) which measured the varus and valgus angles for a moment of 10 Nm. Our purpose was to determine if varus and valgus angles measured at clinical follow-up, was equivalent to the balancing parameters of distraction forces or contact forces measured at surgery.

METHODS

The SKF, which measured VV angles using stretch sensors on each side of the knee, was validated by cadaver studies, fluoroscopy, and emg. The balancing parameters were:

The lateral and medial contact forces at surgery, expressed as FL/FM

The distraction tensions in the collateral ligaments at surgery, expressed as TL/TM

The moments to cause lift-off when a varus or valgus moment is applied, MVAR/MVAL

The varus and valgus angles measured at post-op follow-up, VAR/VAL

A force analysis, and measurements on 101 surgical cases & clinical follow-up in an IRB study, were carried out to determine the relationship between these parameters.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 19 - 19
1 May 2016
Walker P Shneider S Meere P
Full Access

INTRODUCTION

Important surgical requirements for optimal function are accurate bone cut alignments and soft tissue balancing. From an unbalanced state, balancing can be achieved by Surgical Corrections including soft tissue releases, bone cut modifications, and changing tibial insert thickness. Surgical balancing can now be quantified using an instrumented tibial trial, but the procedures and results need further investigation. Our major purpose was to determine the initial balancing after making the bone cuts, and the final accuracy of balancing after Surgical Corrections. A related purpose was to determine the number and effectiveness of different Corrections in achieving balancing.

METHODS

During 101 surgeries of a PCL-retaining TKA, screen capture software recorded the video feed of surgery, angular data from the navigation system, and lateral and medial contact forces from the instrumented tibial trial. Initial bone cuts were made using navigation based on measured resection. The instrumented tibial trial measured the magnitudes and locations of the contact forces on the lateral and medial sides throughout flexion. The Heel Push Test (Walker 2014) determined the initial balancing, defined as a ratio of the medial/total force at 0, 30, 60 and 90 degrees flexion. A balanced knee with equal lateral and medial forces would show a value of 0.5. Surgical Corrections were then performed with the goal of achieving balancing. The most common Corrections were soft tissue releases (total 63 incidences), including MCL, postero-lateral corner, postero-medial corner; and increasing/decreasing tibial insert thicknesses (34 incidences).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 36 - 36
1 May 2016
Meere P Walker P Schneider S Salvadore G Borukhov I
Full Access

Introduction

The role of soft tissue balancing in optimizing functional outcome and patient satisfaction after total knee arthroplasty surgery is gaining interest. This is due in part to the inability of pure alignment to demonstrate excellent functional outcomes 6. Consistent soft tissue balancing has been aided by novel technologies that can quantify loads across the joint at the time of surgery 4. In theory, compressive load equilibrium should be correlated with ligamentous equilibrium between the medial and lateral collateral ligaments. The authors propose to use the Collateral Ligaments Strain Ratio (CLSR) as a functional tool to quantify and track surgical changes in laxity of the collateral ligaments and correlate this ratio to validated functional scores and patient reported outcomes. The relationship with intra-operative balancing of compartmental loads can then be scrutinized. The benefits of varus-valgus balancing within 2o include increased range of motion 7, whereas pressure imbalance between the medial and lateral joint compartments has been linked to condylar liftoff and abnormal kinematics post-TKA 8.

Methods

The study is a prospective IRB approved clinical study with three cohorts of 50 patients each: (1) a surgical prospective study group (2) a matched control group of non-operated high function patients; (3) a matched control group of high function knee arthroplasty recipients. Standard statistical analysis method is applied. The testing of the CLSR is performed using a validated Smart Knee Brace developed by the authors and previously reported 1. The output variables consist of the maximum angular change of the knee in the coronal plane at 10 degrees of flexion produced by a controlled torque application in the varus and valgus (VV) directions. This creates measureable strain on the lateral and medial collateral ligaments, which is reported as a ratio (CLSR). The New Knee Society Score is used to track outcomes. The intra-operative balance is achieved by means of an instrumented tibial tray (OrthoSensor, Inc).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 37 - 37
1 May 2016
Meere P Schneider S Borukhov I Walker P
Full Access

Introduction

The mechanical classical method of knee surgical instrumentation by alignment is based on built-in compromises and is considered insufficient to ensure consistent success. Soft tissue balancing is thus now seen as necessary for optimal functional outcomes and patient satisfaction. (Matsuda 2005, Winemaker 2002). The authors have previously demonstrated that balancing can be achieved through specific strategic moves. In this study, the goal was to determine the efficacy of a given surgical algorithm and to define predictors of improved outcome. The surgical target is equilibrium of contact loads. The mechanical axis remains in neutral, however subtle variation in the joint line obliquity and posterior slope are tolerated within the literature established boundaries of +/− 3 degrees and less than 10 degrees respectively.

Methods

Data was obtained from 101 consecutive primary procedures from a single surgeon (PAM) using a PCL-retaining device. For all cases the testing methodology consisted of a sag test, heel push, drawer testing at 90 degrees, and varus-valgus laxity testing at 10 degrees of flexion. Instrumented tibial trials were used to measure the contact forces on the lateral and medial sides at 10, 30, 60 and 90 degrees of flexion. Specific releases were identified and noted based on matrix profiling after each test. Re-iteration loops were enacted until balance within 15 lbs. of difference was achieved. The data was expressed as the ratio of medial/total force (total=medial + lateral), with 0.5 being equal lateral and medial forces. This was named the Contact Load Ratio (CLR). The load distribution was expressed as a scatter graph of lateral v. medial compartmental loads (Figure 1)


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 116 - 116
1 May 2016
Walker P Meere P Borukhov I Bell C
Full Access

PURPOSE

Soft tissue balancing can be achieved by using spacer blocks, by distractors which measure tensile forces, or by instrumented devices which measure the forces on the lateral and medial condyles. However there is no quantitative method for assessment of balancing at clinical follow-up; to address this, we developed a Smart Knee Fixture (SKF) which measured the varus and valgus angles for a moment of 10 Nm. Our purpose was to determine if varus and valgus angles measured at clinical follow-up, was equivalent to the balancing parameters of distraction forces or contact forces measured at surgery. METHODS: The SKF, which measured VV angles using stretch sensors on each side of the knee, was validated by cadaver studies, fluoroscopy, and emg. The balancing parameters were:

The lateral and medial contact forces at surgery, expressed as FL/FM

The distraction tensions in the collateral ligaments at surgery, expressed as TL/TM

The moments to cause lift-off when a varus or valgus moment is applied, MVAR/MVAL

The varus and valgus angles measured at post-op follow-up, VAR/VAL

A force analysis, and measurements on 101 surgical cases & clinical follow-up in an IRB study, were carried out to determine the relationship between these parameters.

RESULTS

The ratio TL/TM was approx. equal to FL/FM, especially near to a balanced state

The ratio MVAR/MVAL (lift-off moments) was equal to FL/FM

The ratio VAR/VAL was approx. equal to FL/FM only if the collateral stiffnesses were equal;

otherwise the ratio was approx. proportional to the collateral stiffnesses.

In the clinical follow-ups, there was no significant linear relation between VAR/VAL and FL/FM.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 6 - 6
1 Feb 2016
Meere P Schneider S Borukhov I Walker P
Full Access

Introduction

The role of soft tissue balancing in optimising functional outcome and patient satisfaction after total knee arthroplasty surgery is gaining interest. Consistent soft tissue balancing has been aided by novel technologies that can quantify loads across the joint at the time of surgery. Based on free body diagram theory, compressive load equilibrium should be correlated with ligamentous equilibrium between the medial and lateral collateral ligaments. The authors propose to use the Collateral Ligaments Strain Ratio (CLSR) as a functional tool to quantify and track the effectuated surgical change in laxity of the medial and lateral collateral ligaments and correlate this ratio to validated functional scores and patient reported outcomes. The relationship with intra-operative balancing of compartmental loads can then be scrutinised.

Methods

The study is a prospective clinical study with three cohorts of 50 patients each: (1) a surgical prospective study group with ligamentous testing pre-operatively, at 4 weeks, 3 months and 6 months post-operatively; (2) a matched control group of non-operated high function patients; (3) a matched control group of high function knee arthroplasty recipients. Standard statistical analysis method is applied. The testing of the CLSR is performed using a validated Smart Knee Brace developed by the authors and previously reported. The output variables consist of the maximum angular change of the knee in the coronal plane at 10 degrees of flexion produced by a controlled torque application in the varus and valgus (VV) directions. This creates measureable strain on the lateral and medial collateral ligaments, which is reported as a ratio (CLSR). The New Knee Society Score is used to track outcomes. The intra-operative balance is achieved by means of an instrumented tibial tray (OrthoSensor, Inc). The applied torque was standardised to 10Nm with a handheld wireless dynamometer.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 3 - 3
1 Feb 2016
Meere P Schneider S Borukhov I Walker P
Full Access

Introduction

Balancing at surgery is important for clinical outcome in terms of pain relief, flexion range, and function. The methodology usually involves making bone cuts to achieve correct leg alignment, and then obtaining equal gaps in extension and flexion using spacer blocks or tensor devices. In this study, we describe a method for quantifying balancing throughout the flexion range and show the effect of different surgical corrections from an unbalanced to a balanced state. In this way, we quantified how accurately balancing could be achieved within the practical time frame of a surgical procedure.

Methods

Data was obtained from 80 primary procedures using a PCL-retaining device. Initial bone cuts were made using navigation. Instrumented tibial trials were used to measure the contact forces and locations on the lateral and medial sides. Video/audio recordings were made of all aspects of the surgeries. The initial balancing was recorded during the Heel Push Test, namely the lateral and medial contact forces for the flexion range. The data was expressed as medial/total force ratio (total=medial + lateral), with 0.5 being equal lateral and medial forces. Surgical corrections to correct the specific imbalance pattern, determined from previous research, were carried out. The Heel Push Test was repeated after each correction and at final balancing.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 35 - 35
1 Jan 2016
Bell C Meere P Borukhov I Walker P
Full Access

Introduction

Evaluation of post-operative soft tissue balancing outcomes after Total Knee Arthroplasty (TKA) and other procedures can be measured by stability tests, with Anterior-Posterior (AP) drawer tests and Varus-Valgus (VV) ligamentous laxity tests being particularly important. AP stability can be quantified using a KT1000 device; however there is no standard way of measuring VV stability. The VV test relies on subjective force application and perception of laxity. Therefore we sought to develop and validate a device and method for quantifying knee balancing by analyzing VV stability.

Materials and Methods

Our team developed a Smart Knee Fixture to measure VV angular changes using two dielectric elastomer stretch sensors, placed strategically over the medial and lateral collateral ligaments (see Figure 1). The brace is secured in position with the leg in full extension and the sensors locked with pre-tension. Therefore, contraction and elongation of either sensor is measured and the VV angular deviation of the long axis of the femur relative to that of the tibia is derived and displayed in real time using custom software. EMG muscle activity was previously investigated to confirm there is no resistive activity during the VV test obstructing ligamentous evaluations.

The device was validated in two ways:

A bilateral lower body cadaver specimen, secured in a custom test rig, was used to compare the Smart Knee Fixture's readings to those measured from an optical surgical navigation system. Abduction and adduction force was gradually applied as varus and valgus moments with a wireless hand-held dynamometer up to 50N (19.8Nm) at 0 and 15° flexion.

Two male volunteers were used to compare the Smart Knee Fixture's readings to those measured from fluoroscopic images. An arthroscopic distal thigh leg immobilizer was used to prevent rotation and lateral movements of the thigh when moments were applied at the malleoli. A C-arm Fluoroscope was then positioned focusing on the center of the joint. The tests were performed at full extension, 10 and 20° of flexion and force was gradually applied to 50N.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 36 - 36
1 Jan 2016
Bell C Meere P Borukhov I Rathod P Walker P
Full Access

The use of smart trial components is now allowing a better assessment of soft tissue balancing at the time of total knee replacement surgery. A balanced knee can be defined as one that possesses symmetry, ie. equal and centered lateral and medial forces through the full range of flexion. There is still a need for a standard reproducible surgical test to quickly confirm optimized balancing at surgery with such devices. The Heel Push test is the established standard, by pushing the foot in a cephalad direction while supporting the thigh and keeping the leg stable in the vertical plane. A common variation of this test is the Thigh Pull test where the foot is actively assisted during the cephalad pull of the thigh through deep flexion. The test is an open chain test. The Thigh Pull test may be an improvement since the weight of the leg is alleviated and no supplemental compressive forces are introduced. The directional changes of the lower extremity are thus a result of ligamentous tension and balances. The purpose of this study is to compare the two tests using a standard testing methodology and observe the variation in kinetic parameters in a controlled biomechanical setting.

A custom l rig was developed, which independently controls all six degrees of freedom about the knee joint. In addition a commercial navigation system was used to derive instantaneous alignment values and flexion angles between the tibia and femur. The pelvis was fixed to the table and the foot was fitted onto a low friction carriage along a slide rail. The knee design used was cruciate retaining. The pressure mapping system was a wireless tibial trial that provided magnitude of load per compartment.

The study is a preliminary cadaveric study reporting the data from two. In this experiment the leg was then tested with the Heel Push and Thigh Pull tests after obtaining optimum soft tissue balance of the cadaveric specimen. From this standard neutral state a series of single surgical variables were introduced to mimic common intra-operative surgical corrections. This was achieved through custom tibial liner and angle shims.

The results defied theoretical anticipation. Though the total contact forces with heel push were generally higher than with thigh pull, the relative load distribution between compartments did not follow a trend (see Figure 1). Furthermore in deeper flexion the persistence of relatively high contact pressures would suggest that ligaments still generate intra-articular forces despite the much weaker gravitational effect. The clinical relevance lies in the asymmetry of the load distribution between medial and lateral compartment for the two methods tested. The load asymmetry as tested by the Thigh Pull test may correspond to an open chain in swing phase. This asymmetry would force some axial rotation and tibial femoral alignment deviation that can significantly affect the forces at the time of heel strike. The Heel Push test would be more representative of the compressive forces in a closed chain mode as seen during the stance phase of gait.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 109 - 109
1 Jan 2016
Walker P Meere P Bell C
Full Access

There are many different approaches to achieving balancing in total knee surgery. The most frequently used method is to obtain correctly aligned bone cuts, and then carry out necessary soft tissue releases to achieve equal flexion and extension gaps. In some techniques, the bone cuts themselves are determined by the prevailing soft tissue status or the kinematics during flexion-extension. Navigation can provide quantitative data during these processes but so far, navigation is used in only in a minority of cases. However in recent years, new technologies have been introduced with lower cost and implementation time, allowing for more widespread use. Early studies have indicated that more reproducible balancing can be obtained, and that balancing has a positive effect on clinical outcomes. However the ability to measure balancing quantitatively during surgery, has raised the questions of the most systematic method for implementation during surgery, and the relative influence of various correcting factors. Further, the ideal balancing parameters with respect to varus-valgus ratios and the magnitudes during a full flexion range, have yet to be defined. Even if normative data is the target, there is scant data on this topic.

In our own laboratory, we carried out experiments on knee specimens where the various surgical variables were systematically investigated for their effect on varus-valgus balancing. Different tests were developed including the ‘Heel Push Test’ where lateral and medial contact forces were plotted as a function of flexion. Imbalances were achieved with either bone cut adjustments or soft tissue releases. The major finding was that adjustments of only 2 mms or 2 degrees could correct most imbalances. This was considered to be due to two effects; the pretension in the ligaments bringing the structure to the stiff part of the load-elongation curve, and the high values of the stiffness itself. Medial-lateral equality was the goal in this work, but recognizing that this may not be the situation in the normal knee. To answer this question, we developed a method for measuring the varus-valgus balancing in normal subjects, using a ‘Smart Knee Fixture’ with embedded stretch sensors. We validated this device using cadaveric specimens, and normal volunteers using fluoroscopy and electromyography. We are now applying the method in an IRB study to both normals and post-operative knee replacement cases. For the latter, the relation between operative data, and post-operative balancing will be studied, as well as the relation of balancing to functional outcomes.

This overall subject of balancing at surgery, and the post-operative effects, is open to extensive experimental research, and is predicted to result in improved outcomes.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 34 - 34
1 Jan 2016
Bell C Meere P Borukhov I Rathod P Walker P
Full Access

Soft tissue balancing in total knee replacement may well be the determining factor in raising the fair patient satisfaction. The development of intelligent implants allows quantification of reactive loads to applied pressures. This can be tested in dynamic mode such as heel push test at surgery, or in static mode such as when testing for varus/valgus (VV) laxity of the collateral ligaments of the knee. We postulate that a well-balanced knee will have comparable if not equal load distribution across compartments in dynamic loading. When tested for laxity, we anticipate an equal or comparable response to VV applied loads under physiologic load range of 10–50N. This study sought to analyze the relationship between the kinematic (joint motion) and kinetic (force) effects to VV testing in the 0–15 degrees range of flexion. One goal was to demonstrate that testing the knee in locked extension (Screw Home effect) is unreliable and should be abandoned in favor of the more reliable VV testing at 10–15 degrees of flexion.

This is a preliminary cadaveric study utilizing data from two hemibodies. The pelvis was fixed in a custom test rig with open or closed chain lower leg testing capability along a sliding rail with foot VV translational. Forces were applied at the malleoli with a wireless hand held dynamometer. Kinematic analysis of the hip-knee-ankle (HKA) tibiofemoral angle was derived from a commercial navigation system with mounted infrared trackers. Kinetic analysis was derived from a commercially available sensor imbedded in a tibial trial liner. Balance was optimized by conventional methods with the use of the sensor feedback until loads were roughly symmetrical and VV testing yielded symmetrical rise in opposite compartments. The VV testing was then performed with the knees locked at the femoral side in axial rotation and translational motion in any plane. Sagittal flexion was pre-set at 0, 10, and 15 degrees and progressive load was applied.

Results

From the graphs one can observe significant differences between VV testing at 0 degrees (locked Screw Home), 10 degrees, and 15 degrees of flexion. The shaded area corresponds to the common range of VV stress testing loading pressure, typically less than 35N. The HKA deviates from neutrality no sooner than by the middle of the physiologic test zone. By 35N, the magnitude of the effect is also much less than that observed at 10 and 15 degrees (unlocked from Screw Home). From the kinetic analysis one can also note the significant difference in the High-Low spread throughout the testing range of applied pressure.

If the surgeon tests in the low range of applied loads, he/she may not observe the kinematic joint opening effect. The kinetic effect seems more reliable as sensed loads are detectable earlier on. It is clear however that testing at 10–15 degrees offers a much better sensitivity to the VV laxity or stiffness as exemplified in the bottom portions of the figure. Therefore testing in locked Screw Home full extension may lead to underestimation of the true coronal laxity of the joint.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 37 - 37
1 Jan 2016
Anderson C Gustke KA Roche M Golladay G Meere P Elson L
Full Access

INTRODUCTION

Patient-reported satisfaction is a critical measure in understanding the clinical success of total knee arthroplasty. Yet, satisfaction levels in TKA patients are generally lower than THA patients; and surgeon-patient agreeability regarding clinical success is typically in discordance. Thus, the purpose of this evaluation was to report on the one-year satisfaction data of a group of sensor-assisted TKA patients, and compare that data to the average satisfaction reported in literature, as measured by a meta-analysis.

METHODS

One hundred and thirty five patients received TKA utilizing intra-operative sensing technology to evaluate soft-tissue balance as part of a prospective multicenter study. Patients were classified by two groups: “balanced” and “unbalanced”. Quantitative “balance” was defined as a mediolateral intercompartmental loading difference of ≤ 15 pounds; all loading exceeding 15 pounds was classified as “unbalanced”. At the one-year follow-up visit, a 7-question patient satisfaction survey was administered. The answering schema of this survey was modeled using a modified five-point Likert scale, ranging from “True” to “False” (or “Very Satisfied” to “Very Dissatisfied,” where appropriate). A meta-analysis of literature was performed and studies selected for inclusion in this analysis were required to meet the following criteria: all patients were in receipt of a primary TKA; satisfaction data was collected post-operatively; and the proportion of patients who were “satisfied” to “very satisfied” was statistically described.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 33 - 33
1 Jan 2016
Anderson C Gustke KA Roche M Golladay G Meere P Elson L
Full Access

INTRODUCTION

The cost associated with the TKA revision burden is projected to reach 13 billion dollars, annually. Complications reported by post-TKA patients include: pain (44%, multilocational), sensation of instability (21% reason for revision), and joint stiffness (17% reason for revision); problems that may be attributed to soft-tissue imbalance. One of the possible reasons for the substantial prevalence of such complications is the subjectivity associated with defining soft-tissue balance. A priority must be placed on developing new objective methods with which to avoid costly post-operative complications, including the integration of intraoperative sensing technology. The purpose of this evaluation was to report on the disparity between the patient-reported outcomes scores of quantitatively balanced versus unbalanced patients, at 1-year, using a group of 135 multicenter patients.

METHODS

135 prospective patients, from 8 U.S. sites, have had primary TKA performed with the use of intraoperative sensors. Patients were classified by two groups: “balanced” and “unbalanced”. Quantitative “balance” was defined as a mediolateral intercompartmental loading difference of ≤ 15 pounds; all loading exceeding 15 pounds was classified as “unbalanced”. For all patients, the following kinematic data was captured: varus/valgus stability, anteroposterior stability, flexion contracture (if any), extension lag (if any), anatomic alignment, and ROM. Also at each clinical follow-up visit, activity levels and two patient-reported outcomes measures were administered, including: the American Knee Society Score (KSS), and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 236 - 236
1 Dec 2013
Bell C Walker P Kummer F Meere P
Full Access

Balancing in total knee replacement is generally carried out using the feel and experience of the surgeon, using spacer blocks or distractors. However, such a method is not generally applicable to all surgeons and nor does it provide quantitative data of the balancing itself. One approach is the use of instrumented distractors, which have been used to monitor soft tissue releases or indicate a flexion cut for equal lateral and medial forces. More recently an instrumented tibial trial has been introduced which measures and displays the magnitude and location of the loads on the lateral and medial plateaus, during various manoeuvres carried out at surgery. The data set is then used by the surgeon to determine options, whether soft tissue releases or bone cut adjustments, to achieve lateral-medial equality.

The testing method consisted of mounting the femoral component rigidly in a fixture on the vertical arm of an MTS machine. The tibial component was fixed on to a platform which allowed varus-valgus correction, and where the component could be displaced or rotated in a horizontal plane. Two of each size times 4 sizes of production components were tested. Compressive forces from 0–400N in steps of 50N were applied and the readings taken. There were strong correlations between applied and measured forces with mean Pearson's Correlation Coefficient of 0.958.

The special tests under different conditions did not have any effect on the output values. The output data proved to be repeatable under Central Loading with a maximum standard deviation of ± 15.36N at the highest applied force of 400N. “Low battery” did not adversely affect the data. Applying the load steadily to maximum versus load-unload-zero tests produced similar results. Lubrication versus no lubrication tests produced no changes to the results. There was no cross talk of the electronics within the device when loaded on one condyle. For both central and anterior-posterior loading, the contact points were centered medial-lateral on the GUI display, and tracked contact point translation appropriately.

Anterior-posterior loading did create output load variance at the extremes. However, it enabled the validation of the relationship of the femur on the trial surface. In addition, malrotation would be indicated by the femur riding up on the anterior or posterior tibial edges, important for soft tissue tension in all flexion angles.

In conclusion, the sensors provided data which was accurate to well within a practical range for surgical conditions. In our separate experiments on 10 cadaveric leg specimens, even the same test under controlled conditions could produce variations of up to ± 30N. Hence the sensor outputs indicated whether or not the knee was balanced to that level of tolerance, while the contact point data would indicate contacts too close to the anterior or posterior of the tibial surface.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 226 - 226
1 Dec 2013
Amanatullah D DiCesare PE Meere P Pereira G
Full Access

Incorrect registration during computer assisted total knee arthroplasty (CA-TKA) leads to malposition of implants. Our aim was to evaluate the tolerable error in anatomic landmark registration. We incorrectly registered the femoral epicondyles, femoral and tibial centers, as well as the malleoli and documented the change in angulation or rotation. We found that the distal femoral epicondyles were the most difficult anatomic landmarks to register. The other bony landmarks were more forgiving. Identification of the distal femoral epicondyles has a high inter- and intra-observer variability. Our observation that there is less than 2 mm of safe zone in the anterior or posterior direction during registration of the medial and lateral epicondyles may explain the inability of CA-TKA to improve upon the outcomes of conventional TKA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 193 - 193
1 Dec 2013
Walker P Meere P Bell C
Full Access

The purpose of balancing in total knee surgery is to achieve smooth tracking of the knee over a full range of flexion without excessive looseness or tightness on either the lateral or medial sides. Balancing is controlled by the alignment of the bone cuts, the soft tissue envelope, and the constraint of the total knee. Recently, Instrumented Tibial Trials (OrthoSensor) which measure and display the location and magnitude of the forces on the lateral and medial condyles, have been introduced, offering the possibly of predictive and quantitative balancing. This paper presents the results of experiments on 10 lower limb specimens, where the effects of altering the bone cuts or the femoral component size were measured.

A special leg mounting rig was fixed to a standard operating table. A boot was strapped to the foot, and the boot tracked along a horizontal rail to allow flexion-extension. The initial bone cuts were carried out by measured resection using a navigation system. The trial femoral component and the instrumented tibial trial were inserted, and the following tests carried out:

Sag Test; foot lifted up, the trial thickness chosen to produce zero flexion.

Heel Push Test; heel moved towards body to maximum flexion.

Varus-Valgus Test, AP and IXR Tests were also carried out, but not discussed here.

For an initial state of the knee, close to balanced, the lateral and medial contact forces were recorded for the full flexion range. The mean value of the contact forces per condyle was 77.4N, the mean in early flexion (0–60 deg) was 94.2N, and the mean in late flexion (60–120 deg) was 55.7N. The difference was due to the effect of the weight of the leg. One of the following Surgical Variables was then implemented, and the contact forces again recorded.

Distal femoral cut; 2 mm resection (2 mm increase in insert thickness to preserve extension)

Tibial frontal varus, 2 mm lateral stuffing

Tibial frontal valgus, 2 mm medial stuffing

Tibial slope angle increase (5 deg baseline); +2 degrees

Tibial slope angle decrease (5 deg baseline); −2 degrees

Increase in AP size of femoral component (3 mm)

The differences between the condyle force readings before and after the Surgical Variable were calculated for low and high angular ranges. The mean values for the 10 knees of the differences of the above Surgical Variables from the initial balanced state are shown in the chart.

From literature data, the mean tension increase in one collateral ligament is close to 25N/mm up to the toe of the load-elongation graph, and 50N/mm after the toe. Hence in the initial balanced state, the collateral ligaments were elongated by 2–4 mm producing pretension. From the Surgical Variables data, up to 2 mm/2 deg change in bone cuts (or 3 mm femcom change), and collateral ligament releases up to 2 mm, would correct from any unbalanced state to a balanced state.

This data provides useful guidelines for the use of the Instrumented Tibial Trials at surgery, in terms of bone cut adjustments and ligament releases.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 421 - 421
1 Dec 2013
Meere P Walker P Bell C
Full Access

Obtaining accurate bone cuts based on mechanical axes and ligament balancing, are necessary for a successful total knee procedure. The OrthoSensor Tibial Trial displays on a GUI the magnitude and location of the lateral and medial contact forces at surgery. The goal of this study was to develop algorithms to inform the surgeon which bone cuts or soft tissue releases were necessary to achieve balancing, from an initial unbalanced state.

A rig was designed for lower body specimens mounted on a standard operating table. SURGICAL TESTS were then defined: Sag Test, leg supported at the foot; Dynamic Heel Push test, flexing to 120 degrees with the foot sliding along a rail; Varus-Valgus test; AP Drawer test; Internal-External Rotation test. The bone cuts were made using a Navigation system, matching the Triathlon PCL retaining knee. To determine the initial thickness of the tibial trial, the Sag Test was performed to reach 0 deg flexion. The Heel Push Test was then performed to check the AP position of the lateral and medial contacts, from which the rotational position of the tibial tray was determined. Pins were used to reproduce this position during the experiments.

SURGICAL VARIABLES were then defined, which would influence the balancing: LCL Stiffness, MCL Stiffness, Distal Femoral Cut Level, Tibial Sagittal Slope, Tibial Varus or Valgus, and AP Femoral Component Length. Balancing was defined as equal lateral and medial forces due to soft tissue tensions throughout the flexion range, equal varus and valgus stiffnesses, and no contacts closer than 10 mm to component edges. All of the above tests were then performed sequentially, and the changes in the contact force readings were considered as a signature of that Surgical Variable.

Testing was carried out on 10 full leg specimens. The Sag Test was the basic test for determining the thickness of the tibial insert. The Heel Push Test was then implemented from which force data throughout flexion was determined; followed by the Varus-Valgus Test. In a surgical case, this data will be used in a decision tree to identify which Surgical Variable required correction. In the experiments, by obtaining the above data for each SURGICAL VARIABLE in turn, we were able to determine a SIGNATURE for each SURGICAL VARIABLE. It was found that there was considerable variation in the force magnitudes between knees. However the SIGNATURES were sufficient to point to the specific SURGICAL VARIABLE requiring correction. In some knees, although there was a dominant SURGICAL VARIABLE, even after correcting for that, there was still an imbalanced state, requiring a second correction.

This research provided the fundamental principles and data for:

Defining tests to be carried out at surgery, to obtain force data to determine the SURGICAL VARIABLE to correct.

Defining the algorithm based on Closest Approach, for building up a database of data for predictive purposes.

How to use the Sag Test and the Varus-Valgus test as primary indicators.

How to use the AP Drawer test and the Internal-External Rotation test as fine tune indicators.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 508 - 508
1 Dec 2013
Elson L Gustke KA Golladay G Roche M Meere P Anderson C
Full Access

Introduction

Flexion instability of the knee accounts for, up to, 22% of reported revisions following TKA. It can present in the early post-operative phase or present— secondary to a rupture of the PCL— in the late post-operative phase. While most reports of instability occur in conjunction with cruciate retaining implants, instability in a posterior-stabilized knee is not uncommon. Due to the prevalence of revision due to instability, the purpose of constructing the following techniques is to utilize intraoperative sensors to quantify flexion gap stability.

Methods

500 posterior cruciate-retaining TKAs were performed between September 2012 and April 2013, by four collaborating surgeons. All surgeons used the same implant system, compatible with a microelectronic tibial insert with which to receive real-time feedback of femoral contact points and joint kinetics. Intraoperative kinematic data, as reported on-screen by the VERASENSE™ knee application, displayed similar loading patterns consistent with identifiable sagittal plane abnormalities. These abnormalities were classified as: “Balanced Flexion Gap,” “Flexion Instability” and “Tight Flexion Gap.” All abnormalities were addressed with the techniques described herein.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 2 - 2
1 Aug 2013
Walker P Meere P Bell C
Full Access

Obtaining accurate bone cuts based on mechanical axes and ligament balancing, are necessary for a successful total knee procedure. The Orthosensor Tibial Trial displays on a GUI the magnitude and location of the lateral and medial contact forces at surgery. The goal of this study was to develop the algorithms to inform the surgeon which bone cuts or soft tissue releases were necessary to achieve balancing, from an initial unbalanced state.

A rig was designed for lower body specimens mounted on a standard operating table. Surgical Tests were then defined: Sag Test, leg supported at the foot; Dynamic Heel Push test, flexing to 120 degrees with the foot sliding along a rail; Varus-Valgus test; AP Drawer test; Internal-External Rotation test. The bone cuts were made using a Navigation system, to match the Triathlon PCL retaining knee. To determine the initial thickness of the tibial trial, the Sag Test was performed to reach 0 deg flexion. The Heel Push Test was then performed to check the AP position of the lateral and medial contacts, from which the rotational position of the tibial tray was determined. Pins were used to reproduce this position during the experiments.

Surgical Variables were then defined, which would influence the balancing: LCL Stiffness, MCL Stiffness, Distal Femoral Cut Level, Tibial Sagittal Slope, Tibial Varus or Valgus, and AP Femoral Component Length. Balancing was defined as equal lateral and medial forces due to soft tissue tensions throughout the flexion range, equal varus and valgus stiffnesses, and no contacts closer than 10mm to component edges. All of the above tests were then performed sequentially, and the changes in the contact force readings were considered as a signature of that Surgical Variable.

In an actual surgical case, having obtained readings from the Surgical Tests, the data will be compared with the signatures of the Surgical Variables. This will then identify the Variable which needed correction. The Surgical Tests will be repeated and the readings should be closer to balanced. Further correction of another Variable is carried out if necessary. In early clinical cases, it was found that this method allowed for identification of how to reach a balanced state, and achieved soft tissue balancing in a quantitative way.