header advert
Results 1 - 15 of 15
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 114 - 114
1 May 2016
D'Lima D Colwell C Hsu A Bunn A Patil S
Full Access

Background

Despite the success of total knee arthroplasty (TKA) restoration of normal function is often not achieved. Soft-tissue balance is a major factor leading to poor outcomes including malalignment, instability, excessive wear, and subluxation. Mechanical ligament balancers only measure the joint space in full extension and at 90° flexion. This study uses a novel electronic ligament balancer to measure the ligament balance in normal knees and in knees after TKA to determine the impact on passive and active kinematics.

Methods

Fresh-frozen cadaver legs (N = 6) were obtained. A standard cruciate-retaining TKA was performed using measured resection approach and computer navigation (Stryker Navigation, Kalamazoo, MI).

Ligament balance was measured using a novel electronic balancer (Fig 1, XO1, XpandOrtho, Inc, La Jolla, CA, USA). The XO1 balancer generates controlled femorotibial distraction of up to 120N. The balancer only requires a tibial cut and can be used before or after femoral cuts, or after trial implants have been mounted. The balancer monitors the distraction gap and the medial and lateral gaps in real time, and graphically displays gap measurements over the entire range of knee flexion. Gap measurements can be monitored during soft-tissue releases without removing the balancer.

Knee kinematics were measured during active knee extension (Oxford knee rig) and during passive knee extension under varus and valgus external moment of 10Nm in a passive test rig.

Sequence of testing and measurement:

Ligament balance was recorded with the XO1 balancer after the tibial cut, after measured resection of the femur, and after soft-tissue release and/or bone resection to balance flexion-extension and mediolateral gaps.

Passive and active kinematics were measured in the normal knee before TKA, after measured resection TKA, and after soft-tissue release and/or bone resection to balance flexion-extension and mediolateral gaps.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 102 - 102
1 Jan 2016
D'Lima D Netter J D'Alessio J Kester M Colwell C
Full Access

Background

Wear and fatigue damage to polyethylene components remain major factors leading to complications after total knee and unicompartmental arthroplasty. A number of wear simulations have been reported using mechanical test equipment as well as computer models. Computational models of knee wear have generally not replicated experimental wear under diverse conditions. This is partly because of the complexity of quantifying the effect of cross-shear at the articular interface and partly because the results of pin-on-disk experiments cannot be extrapolated to total knee arthroplasty wear. Our premise is that diverse experimental knee wear simulation studies are needed to generate validated computational models. We combined five experimental wear simulation studies to develop and validate a finite-element model that accurately predicted polyethylene wear in high and low crosslinked polyethylene, mobile and fixed bearing, and unicompartmental (UKA) and tricompartmental knee arthroplasty (TKA).

Methods

Low crosslinked polyethylene (PE). A finite element analysis (FEA) of two different experimental wear simulations involving TKA components of low crosslinked polyethylene inserts, with two different loading patterns and knee kinematics conducted in an AMTI knee wear simulator: a low intensity and a high intensity. Wear coefficients incorporating contact pressure, sliding distance, and cross-shear were generated by inverse FEA using the experimentally measured volume of wear loss as the target outcome measure. The FE models and wear coefficients were validated by predicting wear in a mobile bearing UKA design.

Highly crosslinked polyethylene (XLPE). Two FEA models were constructed involving TKA and UKA XLPE inserts with different loading patterns and knee kinematics conducted in an AMTI knee wear simulator. Wear coefficients were generated by inverse FEA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 72 - 72
1 Jan 2016
Nagamine R Weijia C Patil S D'Lima D Todo M
Full Access

Introduction

The effect of each step of medial soft tissue release was assessed taking the expansion strength and patellar condition into account in five fresh frozen normal cadaver specimens.

Methods

In each cadaver specimen, only proximal tibia was cut. Then, ACL was cut, and deep MCL fiber was released. This condition was set as “the basic”. Joint gap distance and angle were measured at full extension, 30°, 60°, 90°, 120° flexion and in full flexion. The measurement was firstly done with the standard tensor/balancer with the patella everted, and the next with the offset tensor/balancer with the patella reduced. The torque of 10, 20 and 30 inch-pounds were applied through the specialized torque wrench. After the measurement in “the basic”, PCL, MCL superficial fibres, pes anserinus and semi-membranosus were released step by step. Measuring the joint gap distance and angle with the same scheme above were conducted after the each step.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 103 - 103
1 Jan 2016
D'Lima D Patil S Bunn A Colwell C
Full Access

Background

Despite the success of total knee arthroplasty (TKA) restoration of normal function is often not achieved. Soft tissue balance is a major factor for poor outcomes including malalignment, instability, excessive wear, and subluxation. Computer navigation and robotic-assisted systems have increased the accuracy of prosthetic component placement. On the other hand, soft tissue balancing remains an art, relying on a qualitative feel for the balance of the knee, and is developed over years of practice

Several instruments are available to assist surgeons in estimating soft tissue balance. However, mechanical devices only measure the joint space in full extension and at 90° flexion. Further, because of lack of comprehensive characterization of the ligament balance of healthy knees, surgeons do not have quantitative guidelines relating the stability of an implanted to that of the normal knee. This study measures the ligament balance of normal knees and tests the accuracy of two mechanical distraction instruments and an electronic distraction instrument.

Methods

Cadaver specimens were mounted on a custom knee rig and on the AMTI VIVO which replicated passive kinematics. A six-axis load cell and an infrared tracking system was used to document the kinematics and the forces acting on the knee.

Dynamic knee laxity was measured under 10Nm of varus/valgus moment, 10Nm of axial rotational moment, and 200N of AP shear. Measurements were repeated after transecting the anterior cruciate ligament, after TKA, and after transecting the posterior cruciate ligament.

The accuracy and reproducibility of two mechanical and one electronic distraction device was measured.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 47 - 47
1 Jan 2016
Mizu-uchi H Okazaki K D'Lima D Hamai S Okamoto S Iwamoto Y Matsuda S
Full Access

Introduction

Using the tibial extramedullary guide needs meticulous attention to accurately align the tray in total knee arthroplasty (TKA). We previously reported the risk for varus tray alignment if the anteroposterior (AP) axis of the ankle was used for the rotational direction of the guide. The purpose of our study was to determine whether aligning the rotational direction of the guide to the AP axis of the proximal tibia reduced the incidence of varus tray alignment when compared to aligning the rotational direction of the guide to the AP axis of the ankle.

Materials and Methods


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 76 - 76
1 Dec 2013
Hoenecke H Flores-Hernandez C Hermida J Kersten A D'Lima D
Full Access

Introduction:

Total shoulder arthroplasty (TSA) is the current standard treatment for severe osteoarthritis of the glenohumeral joint [1]. Often, severe arthritis is associated with abnormal glenoid version or excessive posterior wear [2]. Reaming to correct more than 15° of retroversion back to neutral is not ideal as it may remove an excessive amount of the outer cortical support and medialize the glenoid component [3]. Two recent glenoid components with posterior augments—wedged and stepped—have been designed to address excessive posterior wear and to allow glenoid component neutralization. Hypothetically, these augmented glenoid designs lessen the complications associated with using a standard glenoid component in cases of shoulder osteoarthritis with excessive posterior wear. We set out to determine which implant type (standard, stepped, or wedged) corrects retroversion while removing the least amount of bone in glenoids with posterior erosion.

Methods:

Serial shoulder CT scans were obtained from 121 patients before total shoulder arthroplasty. These were then classified using the Walch Classification. We produced 3D models of the scapula from CT scans for 10 subjects that were classified as B2 using the software MIMICS (Materialise, Belgium). Each of these 10 glenoid subjects were then virtually implanted with standard, stepped, and wedged glenoid components (Fig 1). The volume of surgical bone removed and maximum reaming depth were calculated for each design and for each subject. In addition, the area of the backside of the glenoid in contact with cancellous versus cortical bone was calculated for each glenoid design and for each subject (Fig 2). ANOVA testing was performed.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 277 - 277
1 Dec 2013
D'Lima D Netter J Steklov N Hermida J Chen P Nevelos J
Full Access

Introduction:

Microseparation has resulted in more than ten-fold increase in ceramic-on-ceramic and metal-on-metal bearing wear, and even fracture in a zirconia head [1–4]. However, despite the greater microseparation reported clinically for metal-on-polyethylene wear, less is known about its potential detrimental effects for this bearing couple. This study was therefore designed to simulate the effects of micromotion using finite element analysis and to validate computational predictions with experimental wear testing.

Methods:

Experimental wear rates for low and highly crosslinked polyethylene hip liners were obtained from a previously reported conventional hip wear simulator study [5]. A finite element model of the wear simulation for this design was constructed to replicate experimental conditions and to compute the wear coefficients that matched the experimental wear rates. We have previous described out this method of validation for knee wear simulation studies [6,7]. This wear coefficient was used to predict wear in a Dual-Mobility hip component (Fig 1).

Dual mobility total hip arthroplasty components, Restoration ADM (Fig 1), with highly crosslinked acetabular liners were experimentally tested: the control group was subjected to wear testing using the ISO 14242-1 waveform on a hip wear simulator. The microseparation group was subjected to a nominal 0.8 mm lateral microseparation during the swing phase by engaging lateral force springs and reducing the swing phase vertical force.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 40 - 40
1 Dec 2013
D'Lima D Bunn A Patil S Colwell C
Full Access

Introduction:

Kinematic studies are used to evaluate function and efficacy of various implant designs. Given the large variation between subjects, matched pairs are ideal when comparing competing designs. It is logical to deduce that both limbs in a subject will behave identically during a given motion [1], barring unilateral underlying pathology, thus allowing for the most direct comparison of two designs. It is our goal to determine if this is a valid assumption by assessing whether or not there are significant differences present in the kinematics of left and right knees from the same subject. Gait studies have compared pre-and postoperative implantation kinematics for various pathologies like ACL rupture [2] and osteoarthritis [3, 4]. We designed a study to assess squatting in cadaver specimens.

Methods:

Sixteen matched pairs of fresh-frozen cadavers, (Eleven males, five females; aged 71 years [± 10 yrs]) were tested. Each knee, intact, was tested by mounting it on a dynamic, quadriceps-driven, closed-kinetic-chain Oxford knee rig (OKR), which simulated a deep knee bend from full extension to 120° flexion. We chose femoral rollback, tibiofemoral external rotation, tibial adduction, patellofemoral tilt and shift as our outcomes, which were recorded using an active infrared tracking system.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 531 - 531
1 Dec 2013
Sharma A Komitek RD D'Lima D Colwell C
Full Access

Telemetric knee implants have provided invaluable insight into the forces occurring in the knee during various activities. However, due to the high amount of cost involved only a few of them have been developed. Mathematical modeling of the knee provides an alternative that can be easily applied to study high number of patients. However, in order to ensure accuracy these models need to be validated with in vivo force data. Previously, mathematical models have been developed and validated to study only specific activities. Therefore, the objective of this study was compare the knee force predictions from the same model with that obtained using telemetry for multiple activities.

Kinematics of a telemetric patient was collected using fluoroscopy and 2D to 3D image registration for gait, deep knee bend (DKB), chair rise, step up and step down activities. Along with telemetric forces obtained from the implant, synchronized ground reaction forces (GRF) were also collected from a force plate. The relevant kinematics and the GRF were input into an inverse dynamic model of the human leg starting from the foot and ending at the pelvis (Figure 1). All major ligaments and muscles affecting the knee joint were included in the model. The pelvis and the foot were incorporated into the system so as to provide realistic boundary conditions at the hip and the ankle and also to provide reference geometry for the attachment sites of relevant muscles. The muscle redundancy problem was solved using the pseudo-inverse technique which has been shown to automatically optimize muscle forces based on the Crowninshield-Brand cost function. The same model, without any additional changes, was applied for all activities and the predicted knee force results were compared with the data obtained from telemetry.

Comparison of the model predictions for the tibiofemoral contact forces with the telemetric implant data revealed a high degree of correlation both in the nature of variation of forces and the magnitudes of the forces obtained. Interestingly, the model predicted forces with a high level of accuracy for activities in which the flexion of the knee do not vary monotonically (increases and decreases or vice-versa) with the activity cycle (gait, step up and step down). During these activities, the difference between the model predictions with the telemetric data was less than 5% (Figure 2). For activities where flexion varies monotonically (either increases or decreases) with activity (DKB and chair rise) the difference between the forces was less than 10% (Figure 3).

The results from this study show that inverse dynamic computational models of the knee can be robust enough to predict forces occurring at the knee with a high amount of accuracy for multiple activities. While this study was conducted only on one patient with a telemetric implant, the required inputs to the model are generic enough so that it is applicable for any TKA patient with the mobility to conduct the desired activity. This allows kinetic data to be provided for the improvement of implant design and surgical techniques accessibly and relatively inexpensively.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 41 - 41
1 Dec 2013
D'Lima D Patil S Bunn A Bugbee W Colwell C
Full Access

Introduction:

Despite over 95% long-term survivorship of TKA, 14–39% of patients express dissatisfaction due to anterior knee pain, mid-flexion instability, reduction in range of flexion, and incomplete return of function. Changing demographics with higher expectations are leading to renewed interest in patient-specific designs with the goal of restoring of normal kinematics.

Improved imaging and image-processing technology coupled with rapid prototyping allow manufacturing of patient-specific cutting guides with individualized femoral and tibial components with articulating surfaces that maximize bony coverage and more closely approximate the natural anatomy. We hypothesized that restoring the articular surface and maintaining medial and lateral condylar offset of the implanted knee to that of the joint before implantation would restore normal knee kinematics. To test this hypothesis we recorded kinematics of patient-specific prostheses implanted using patient-specific cutting guides.

Methods:

Preoperative CT scans were obtained from nine matched pairs of human cadaveric knees. One of each pair was randomly assigned to one of two groups: one group implanted with a standard off-the-shelf posterior cruciate-retaining design using standard cutting guides based on intramedullary alignment; the contralateral knee implanted with patient-specific implants using patient-specific cutting guides, both manufactured from the preoperative CT scans. Each knee was tested preoperatively as an intact, normal knee, by mounting the knee on a dynamic, quadriceps-driven, closed-kinetic-chain Oxford knee rig (OKR), simulating a deep knee bend from 0° to 120° flexion. Following implantation with either the standard or patient-specific implant, knees were mounted on the OKR and retested. Femoral rollback, tibiofemoral rotation, tibial adduction, patellofemoral tilt and shift were recorded using an active infrared tracking system.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 37 - 37
1 Sep 2012
Patil S Manning M Mizu-uchi H Ezzet K D'Lima D
Full Access

Introduction

It is well known that total knee arthroplasty (TKA) does not preserve normal knee kinematics. This outcome has been attributed to alteration of soft-tissue balance and differences between the geometry of the implant design and the normal articular surfaces. Bicompartmental knee arthroplasty (BKA) has been developed to replace the medial and anterior compartments, while preserving the lateral compartment, the anterior cruciate ligament (ACL), and the posterior cruciate ligament (PCL). In a previous study, we reported that unicompartmental knee arthroplasty did not significantly change knee kinematics and attributed that finding to a combination of preservation of soft-tissue balance and minimal alteration of joint articular geometry (Patil, JBJS, 2007). In the present study, we analyzed the effect of replacing trochlear surface in addition to the medial compartment by implanting cadaver knees with a bicompartmental arthroplasty design. Our hypothesis was that kinematics after BCKA will more closely replicate normal kinematics than kinematics after TKA.

Methods

Eight human cadaveric knees underwent kinematic analysis with a surgical navigation system. Each knee was evaluated in its normal intact state, then after BKA with the Deuce design (Smith & Nephew, Memphis, TN), then after ACL sacrifice, and finally after implanting a PCL-retaining TKA (Legion, Smith & Nephew). Knees were tested on the Oxford knee rig, which simulates a quadriceps-driven dynamic deep knee bend. Tibiofemoral rollback and rotation and patellofemoral shift and tilt were recorded for each condition and compared using repeated measures ANOVA for significance.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 38 - 38
1 Sep 2012
D'Lima D
Full Access

Knee mechanics - Knee forces during ADL and sports activities in TKA patients

Background

Tibiofemoral forces are important in the design and clinical outcomes of TKA. Knee forces and kinematics have been estimated using computer models or traditionally have been measured under laboratory conditions. Although this approach is useful for quantitative measurements and experimental studies, the extrapolation of results to clinical conditions may not always be valid. We therefore developed a tibial tray combining force transducers and a telemetry system to directly measure tibiofemoral compressive forces in vivo.

Methods

Tibial forces were measured for activities of daily living, athletic and recreational activities, and with orthotics and braces, for 4 years postoperatively. Additional measurements included video motion analysis, EMG, fluoroscopic kinematic analysis, and ground reaction force measurement. A third-generation system was developed for continuous monitoring of knee forces and kinematics and for classifying and identifying unsupervised activities outside the laboratory using a wearable data acquisition hardware.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 37 - 37
1 Jun 2012
Mizu-Uchi H Flores-Hernandez C Colwell C Steklov N Matsuda S Iwamoto Y D'Lima D
Full Access

INTRODUCTION

Knee contact force during activities after total knee arthroplasty (TKA) is very important, since it directly affects component wear and implant loosening. While several computational models have predicted knee contact force, the reports vary widely based on the type of modeling approach and the assumptions made in the model. The knee is a complex joint, with three compartments of which stability is governed primarily by soft tissues. Multiple muscles control knee motion with antagonistic co-contraction and redundant actions, which adds to the difficulty of accurate dynamic modeling. For accurate clinically relevant predictions a subject-specific approach is necessary to account for inter-patient variability.

METHODS

Data were collected from 3 patients who received custom TKA tibial prostheses instrumented with force transducers and a telemetry system. Knee contact forces were measured during squatting, which was performed up to a knee flexion angle that was possible without discomfort (range, 80–120°). Skin marker-based video motion analysis was used to record knee kinematics. Preoperative CT scans were reconstructed to extract tibiofemoral bone geometry using MIMICS (Materialise, Belgium). Subject-specific musculoskeletal models of dynamic squatting were generated in a commercial software program (LifeMOD, LifeModeler, USA). Contact was modeled between tibiofemoral and patellofemoral articular surfaces and between the quadriceps and trochlear groove to simulate tendon wrapping. Knee ligaments were modeled with nonlinear springs: the attachments of these ligaments were adjusted to subject-specific anatomic landmarks and material properties were assigned from published reports.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 35 - 35
1 Jun 2012
D'Lima D Wong J Patil S Flores-Hernandez C Colwell C Steklov N Kester M
Full Access

Introduction

Aligning the tibial tray is a critical step in total knee arthroplasty (TKA). Malalignment, (especially in varus) has been associated with failure and revision surgery. While the link between varus malalignment and failure has been attributed to increased medial compartmental loading and generation of shear stress, quantitative biomechanical evidence to directly support this mechanism is incomplete. We therefore constructed and validated a finite element model of knee arthroplasty to test the hypothesis that varus malalignment of the tibial tray would increase the risk of tray subsidence.

Methods


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 36 - 36
1 Jun 2012
D'Lima D Colwell C Steklov N Patil S
Full Access

Background

While in vivo kinematics and forces in the knee have been studied extensively, these are typically measured during controlled activities conducted in an artificial laboratory environment and often do not reflect the natural day-to-day activities of typical patients. We have developed a novel algorithm that together with our electronic tibial component provide unsupervised simultaneous dynamic 3-D kinematics and forces in patients.

Methods

An inverse finite element approach was used to compute knee kinematics from in vivo measured knee forces. In vitro pilot testing indicated that the accuracy of the algorithm was acceptable for all degrees of freedom except knee flexion angle. We therefore mounted an electrogoniometer on a knee sleeve to monitor knee flexion while simultaneously recording knee forces. A finite element model was constructed for each subject. The femur was flexed using the measured knee flexion angle and brought into contact with the fixed tibial insert using the three-component contact force vector applied as boundary conditions to the femoral component, which was free to translate in all directions. The relative femorotibial adduction-abduction and axial rotation were varied using an optimization program (iSIGHT, Simulia, Providence, RI) to minimize the difference between the resultant moments output by the model and the experimentally measured moments. Maximum absolute error was less than 1 mm in anteroposterior and mediolateral translation and was 1.2° for axial rotation and varus-valgus angulation. This accuracy is comparable to that reported for fluoroscopically measured kinematics. We miniaturized the external hardware and developed a wearable data acquisition system to monitor knee forces and kinematics outside the laboratory.