header advert
Results 1 - 50 of 63
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 20 - 20
1 Dec 2022
Ng G El Daou H Bankes M Cobb J Beaulé P
Full Access

Femoroacetabular impingement (FAI) – enlarged, aspherical femoral head deformity (cam-type) or retroversion/overcoverage of the acetabulum (pincer-type) – is a leading cause for early hip osteoarthritis. Although anteverting/reverse periacetabular osteotomy (PAO) to address FAI aims to preserve the native hip and restore joint function, it is still unclear how it affects joint mobility and stability. This in vitro cadaveric study examined the effects of surgical anteverting PAO on range of motion and capsular mechanics in hips with acetabular retroversion.

Twelve cadaveric hips (n = 12, m:f = 9:3; age = 41 ± 9 years; BMI = 23 ± 4 kg/m2) were included in this study. Each hip was CT imaged and indicated acetabular retroversion (i.e., crossover sign, posterior wall sign, ischial wall sign, retroversion index > 20%, axial plane acetabular version < 15°); and showed no other abnormalities on CT data. Each hip was denuded to the bone-and-capsule and mounted onto a 6-DOF robot tester (TX90, Stäubli), equipped with a universal force-torque sensor (Omega85, ATI). The robot positioned each hip in five sagittal angles: Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°; and performed hip internal-external rotations and abduction-adduction motions to 5 Nm in each position. After the intact stage was tested, each hip underwent an anteverting PAO, anteverting the acetabulum and securing the fragment with long bone screws. The capsular ligaments were preserved during the surgery and each hip was retested postoperatively in the robot. Postoperative CT imaging confirmed that the acetabular fragment was properly positioned with adequate version and head coverage. Paired sample t-tests compared the differences in range of motion before and after PAO (CI = 95%; SPSS v.24, IBM).

Preoperatively, the intact hips with acetabular retroversion demonstrated constrained internal-external rotations and abduction-adduction motions. The PAO reoriented the acetabular fragment and medialized the hip joint centre, which tightened the iliofemoral ligament and slackenend the pubofemoral ligament. Postoperatively, internal rotation increased in the deep hip flexion positions of Flexion 60° (∆IR = +7°, p = 0.001) and Flexion 90° (∆IR = +8°, p = 0.001); while also demonstrating marginal decreases in external rotation in all positions. In addition, adduction increased in the deep flexion positions of Flexion 60° (∆ADD = +11°, p = 0.002) and Flexion 90° (∆ADD = +12°, p = 0.001); but also showed marginal increases in abduction in all positions.

The anteverting PAO restored anterosuperior acetabular clearance and increased internal rotation (28–33%) and adduction motions (29–31%) in deep hip flexion. Restricted movements and positive impingement tests typically experienced in these positions with acetabular retroversion are associated with clinical symptoms of FAI (i.e., FADIR). However, PAO altered capsular tensions by further tightening the anterolateral hip capsule which resulted in a limited external rotation and a stiffer and tighter hip. Capsular tightness may still be secondary to acetabular retroversion, thus capsular management may be warranted for larger corrections or rotational osteotomies. In efforts to optimize surgical management and clinical outcomes, anteverting PAO is a viable option to address FAI due to acetabular retroversion or overcoverage.


Bone & Joint Open
Vol. 2, Issue 2 | Pages 134 - 140
24 Feb 2021
Logishetty K Edwards TC Subbiah Ponniah H Ahmed M Liddle AD Cobb J Clark C

Aims

Restarting planned surgery during the COVID-19 pandemic is a clinical and societal priority, but it is unknown whether it can be done safely and include high-risk or complex cases. We developed a Surgical Prioritization and Allocation Guide (SPAG). Here, we validate its effectiveness and safety in COVID-free sites.

Methods

A multidisciplinary surgical prioritization committee developed the SPAG, incorporating procedural urgency, shared decision-making, patient safety, and biopsychosocial factors; and applied it to 1,142 adult patients awaiting orthopaedic surgery. Patients were stratified into four priority groups and underwent surgery at three COVID-free sites, including one with access to a high dependency unit (HDU) or intensive care unit (ICU) and specialist resources. Safety was assessed by the number of patients requiring inpatient postoperative HDU/ICU admission, contracting COVID-19 within 14 days postoperatively, and mortality within 30 days postoperatively.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 21 - 21
1 Feb 2021
Logishetty K Edwards T Liddle A Dean E Cobb J Clark C
Full Access

Background

In the United Kingdom, over 1 million elective surgeries were cancelled due to COVID-19, resulting in over 1.9 million people now waiting more than 4 months for their procedure – 3x the number last year. To address this backlog, the healthcare service has been asked to develop locally-designed ‘COVID-light’ facilities. In our local system, 822 patients awaited orthopaedic surgery when elective surgery was permitted to resume. The phased return of service required a careful and pragmatic prioritisation of patients, to protect resources, patients, and healthcare workers.

Aims

We aim to describe how the COVID-19 Algorithm for Resuming Elective Surgery (CARES) was used to consider 1) Which type of operation and patient should be prioritised? and 2) Which patients are safe to undergo surgery? The central tenets to this were patient safety, predicted efficacy of the surgery, and delivering compassionate care by considering biopsychosocial factors.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 54 - 54
1 Feb 2021
Dandridge O Garner A Amis A Cobb J van Arkel R
Full Access

As treatments of knee osteoarthrosis are continually refined, increasingly sophisticated methods of evaluating their biomechanical function are required. Whilst TKA shows good preoperative pain relief and survivorship, functional outcomes are sub-optimal, and research focus has shifted towards their improvement. Restoration of physiological function is a common design goal that relies on clear, detailed descriptions of native biomechanics. Historical simplifications of true biomechanisms, for example sagittal plane approximation of knee kinematics, are becoming progressively less suitable for evaluation of new technologies. The patellar tendon moment arm (PTMA) is an example of such a metric of knee function that usefully informs design of knee arthroplasty but is not fully understood, in part due to limitations in its measurement. This research optimized PTMA measurement and identified the influence of knee size and sex on its variation.

The PTMA about the instantaneous helical axis was calculated from optical tracked positional data. A fabricated knee model facilitated calculation optimization, comparing four data smoothing techniques (raw, Butterworth filtering, generalized cross-validated cubic spline-interpolation and combined filtering/interpolation). The PTMA was then measured for 24 fresh-frozen cadaveric knees, under physiologically based loading and extension rates. Sex differences in PTMA were assessed before and after size scaling.

Large errors were measured for raw and interpolated-only techniques in the mid-range of extension, whilst both raw and filtered-only methods saw large inaccuracies at terminal extension and flexion. Combined filtering/interpolation enabled sub-mm PTMA calculation accuracy throughout the range of knee flexion, including at terminal extension/flexion (root-mean-squared error 0.2mm, max error 0.5mm) (Figure 1).

Before scaling, mean PTMA throughout flexion was 46mm; mean, peak, and minimum PTMA values were larger in males, as was the PTMA at terminal flexion, the change in PTMA from terminal flexion to peak, and the change from peak to terminal extension (mean differences ranging from 5 to 10mm, p<0.05). Knee size was highly correlated with PTMA magnitude (r>0.8, p<0.001) (Figure 2). Scaling eliminated sex differences in PTMA magnitude, but peak PTMA occurred closer to terminal extension in females (female 15°, male 29°, p=0.01) (Figure 3).

Improved measurement of the PTMA reveals previously undocumented characteristics that may help to improve the functional outcomes of knee arthroplasty. Knee size accounted for two-thirds of the variation in PTMA magnitude, but not the flexion angle at which peak PTMA occurred, which has implications for morphotype-specific arthroplasty and musculoskeletal models. The developed calculation framework is applicable both in vivo and vitro for accurate PTMA measurement and might be used to evaluate the relative performance of emerging technologies.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 53 - 53
1 Feb 2021
Garner A Dandridge O Amis A Cobb J van Arkel R
Full Access

Combined Partial Knee Arthroplasty (CPKA) is a promising alternative to Total Knee Arthroplasty (TKA) for the treatment of multi-compartment arthrosis. Through the simultaneous or staged implantation of multiple Partial Knee Arthroplasties (PKAs), CPKA aims to restore near-normal function of the knee, through retention of the anterior cruciate ligament and native disease-free compartment. Whilst PKA is well established, CPKA is comparatively novel and associated biomechanics are less well understood.

Clinically, PKA and CPKA have been shown to better restore knee function compared to TKA, particularly during fast walking. The biomechanical explanation for this superiority remains unclear but may be due to better preservation of the extensor mechanism. This study sought to assess and compare extensor function after PKA, CPKA, and TKA.

An instrumented knee extension rig facilitated the measurement extension moment of twenty-four cadaveric knees, which were measured in the native state and then following a sequence of arthroplasty procedures. Eight knees underwent medial Unicompartmental Knee Arthroplasty (UKA-M), followed by patellofemoral arthroplasty (PFA) thereby converting to medial Bicompartmental Knee Arthroplasty (BCA-M). In the final round of testing the PKA implants were removed a posterior-cruciate retaining TKA was implanted. The second eight received lateral equivalents (UKA-L then BCA-L) then TKA. The final eight underwent simultaneous Bi-Unicondylar Arthroplasty (Bi-UKA) before TKA. Extensor efficiencies over extension ranges typical of daily tasks were also calculated and differences between arthroplasties were assessed using repeated measures analysis of variance.

For both the medial and lateral groups, UKA demonstrated the same extensor function as the native knee. BCA resulted in a small reduction in extensor moment between 70–90° flexion but, in the context of daily activity, extensor efficiency was largely unaffected and no significant reductions were found. TKA, however, resulted in significantly reduced extensor moments, leading to efficiency deficits ranging from 8% to 43% in flexion ranges associated with downhill walking and the stance phase of gait, respectively.

Comparing the arthroplasties: TKA was significantly less efficient than both UKA-M and BCA-M over ranges representing stair ascent and gait; TKA showed a significant 23% reduction compared to BCA-L in the same range. There were no differences in efficiency between the UKAs and BCAs over any flexion range and TKA efficiency was consistently lower than all other arthroplasties.

Bi-UKA generated the same extensor moment as native knee at flexion angles typical of fast gait (0–30°). Again, TKA displayed significantly reduced extensor moments towards full extension but returned to the normal range in deep flexion. Overall, TKA was significantly less efficient following TKA than Bi-UKA.

Recipients of PKA and CPKA have superior functional outcomes compared to TKA, particularly in relation to fast walking. This in vitro study found that both UKA and CPKA better preserve extensor function compared to TKA, especially when evaluated in the context of daily functional tasks. TKA reduced knee extensor efficiency by over 40% at flexion angles associated with gait, arguably the most important activity to maintain patient satisfaction. These findings go some way to explaining functional deficiencies of TKA compared to CPKA observed clinically.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 44 - 44
1 Feb 2021
Edwards T Patel A Szyszka B Coombs A Kucheria R Cobb J Logishetty K
Full Access

Background

Revision total knee arthroplasty (rTKA) is a high stakes procedure with complex equipment and multiple steps. For rTKA using the ATTUNE system revising femoral and tibial components with sleeves and stems, there are over 240 pieces of equipment that require correct assembly at the appropriate time. Due to changing teams, work rotas, and the infrequency of rTKR, scrub nurses may encounter these operations infrequently and often rely heavily on company representatives to guide them. In turn, this delays and interrupts surgical efficiency and can result in error. This study investigates the impact of a fully immersive virtual reality (VR) curriculum on training scrub nurses in technical skills and knowledge of performing a complex rTKA, to improve efficiency and reduce error.

Method

Ten orthopaedic scrub nurses were recruited and trained in four VR sessions over a 4-week period. Each VR session involved a guided mode, where participants were taught the steps of rTKA surgery by the simulator in a simulated operating theatre. The latter 3 sessions involved a guided mode followed by an unguided VR assessment. Outcome measures in the unguided assessment were related to procedural sequence, duration of surgery and efficiency of movement. Transfer of skills was assessed during a pre-training and post-training assessment, where participants completed multi-step instrument selection and assembly using the real equipment. A pre and post-training questionnaire assessed the participants knowledge, confidence and anxiety.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 124 - 124
1 Apr 2019
Karia M Ali A Harris S Abel R Cobb J
Full Access

Background

Defining optimal coronal alignment in Total Knee Replacement (TKR) is a controversial and poorly understood subject. Tibial bone density may affect implant stability and functional outcomes following TKR. Our aim was to compare the bone density profile at the implant-tibia interface following TKR in mechanical versus kinematic alignment.

Methods

Pre-operative CT scans for 10 patients undergoing medial unicompartmental knee arthroplasty were obtained. Using surgical planning software, tibial cuts were made for TKR with 7 degrees posterior slope and either neutral (mechanical) or 3 degrees varus (kinematic) alignment. Signal intensity, in Hounsfield Units (HU), was measured at 25,600 points throughout an axial slice at the implant-tibia interface and density profiles compared along defined radial axes from the centre of the tibia towards the cortices (Hotelling's t-squared and paired t-test).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 108 - 108
1 Apr 2019
Riviere C Maillot C Auvinet E Cobb J
Full Access

Introduction

The objective of our study was to determine the extent to which the quality of the biomechanical reconstruction when performing hip replacement influences gait performances. We aimed to answer the following questions: 1) Does the quality of restoration of hip biomechanics after conventional THR influence gait outcomes? (question 1), and 2) Is HR more beneficial to gait outcomes when compared with THR? (question 2).

Methods

we retrospectively reviewed 52 satisfied unilateral prosthetic hip patients (40 THRs and 12 HRs) who undertook objective gait assessment at a mean follow-up of 14 months. The quality of the prosthetic hip biomechanical restoration was assessed on standing pelvic radiograph by comparison to the healthy contralateral hip.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 123 - 123
1 Apr 2019
Karia M Vishnu-Mohan S Boughton O Auvinet E Wozencroft R Clarke S Halewood C Cobb J
Full Access

Aims

Accurate and precise acetabular reaming is a requirement for the press-fit stability of cementless acetabular hip replacement components. The accuracy of reaming depends on the reamer, the reaming technique and the bone quality. Conventional reamers wear with use resulting in inaccurate reaming diameters, whilst the theoretical beneficial effect of ‘whirlwind’ reaming over straight reaming has not previously been documented. Our aim was to compare the accuracy and precision of single use additively-manufactured reamers with new conventional reamers and to compare the effect of different acetabular reaming techniques.

Materials and Methods

Forty composite bone models, half high-density and half low-density, were reamed with a new 61 mm conventional acetabular reamer using either straight or ‘whirlwind’ reaming techniques. This was repeated with a 61 mm single use additively-manufactured reamer. Reamed cavities were scanned using a 3D laser scanner with mean diameters of reamed cavities compared using the Mann-Whitney U test to determine any statistically significant differences between groups (p<0.05) [Fig. 1).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 75 - 75
1 Apr 2019
Boughton O Uemura K Tamura K Takao M Hamada H Cobb J Sugano N
Full Access

Objectives

For patients with Developmental Dysplasia of the Hip (DDH) who progress to needing total joint arthroplasty it is important to understand the morphology of the femur when planning for and undertaking the surgery, as the surgery is often technically more challenging in patients with DDH on both the femoral and acetabular parts of the procedure1. The largest number of male DDH patients with degenerative joint disease previously assessed in a morphological study was 122. In this computed tomography (CT) based morphological study we aimed to assess whether there were any differences in femoral morphology between male and female patients with developmental dysplasia undergoing total hip arthroplasty (THA) in a cohort of 49 male patients, matched to 49 female patients.

Methods

This was a retrospective study of the pre-operative CT scans of all male patients with DDH who underwent THA at two hospitals in Japan between 2006–2017. Propensity score matching was used to match these patients with female patients in our database who had undergone THA during the same period, resulting in 49 male and 49 female patients being matched on age and Crowe classification. The femoral length, anteversion, neck-shaft angle, offset, canal-calcar ratio, canal flare index, lateral centre-edge angle, alpha angle and pelvic incidence were measured for each patient on their pre-operative CT scans.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 32 - 32
1 Apr 2018
Van Der Straeten C Abdulhussein D Brevadt MJ Cobb J
Full Access

Background

Hip resurfacing arthroplasty (HRA) and total hip arthroplasty (THA) are treatments of end-stage hip disease. Gait analysis studies comparing HRA and THA have demonstrated that HRA results in a more normal gait than THA. The reasons may include the larger, more anatomic head diameter or the preservation of the neck of the femur with restoration of the anatomical position of the hip centre and normal proprioception. This study investigated (1) whether femoral head size diameter affects gait; (2) whether gait still differs between THA and HRA patients even with comparable head diameters.

Methods

We retrospectively analysed the gait of 33 controls and 50 patients with a unilateral hip replacement, operated by the same surgeon. Follow-up ranged from 9–68 months. In 27 hips a small femoral head size was used (≤ 36mm); in 23 hips a large head size (>36mm). The small size group consisted of 11 long femoral stem THA and 16 short-stem THA and the large group of 5 long-stem THA, 8 short-stem THA and 10 HRA patients. There were 14 females/19 males in the control group; 22 females/5 males in the small size group; 13 females/10 males in the large size group.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 116 - 116
1 Mar 2017
Riviere C Lazennec J Muirhead-Allwood S Auvinet E Van Der Straeten C Cobb J
Full Access

The current, most popular recommendation for cup orientation, namely the Lewinnek box, dates back to the 70's, that is to say at the stone age of hip arthroplasty. Although Lewinnek's recommendations have been associated with a reduction of dislocation, some complications, either impingement or edge loading related, have not been eliminated. Early dislocations are becoming very rare and most of them probably occur in “outlier” patients with atypical pelvic/hip kinematics. Because singular problems usually need singular treatments, those patients need a more specific personalised planning of the treatment rather than a basic systematic application of Lewinnek recommendations. We aim in this review to define the potential impacts that the spine-hip relations (SHRs) have on hip arthroplasty. We highlight how recent improvements in hip implants technology and knowledge about SHRs can substantially modify the planning of a THR, and make the «Lewinnek recommendations» not relevant anymore. We propose a new classification of the SHRs with specific treatment recommendations for hip arthroplasty whose goal is to help at establishing a personalized planning of a THR. This new classification (figures 1 and 2) gives a rationale to optimize the short and long-term patient's outcomes by improving stability and reducing edge loading. We believe this new concept could be beneficial for clinical and research purposes.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 52 - 52
1 Mar 2017
Navruzov T Riviere C Van Der Straeten C Harris S Aframian A Iranpour F Cobb J Auvinet E
Full Access

Background

The accurate positioning of the total knee arthroplasty affects the survival of the implants(1). Alignment of the femoral component in relation to the native knee is best determined using pre- and post-operative 3D-CT reconstruction(2). Currently, the scans are visualised on separate displays. There is a high inter- and intra-observer variability in measurements of implant rotation and translation(3). Correct alignment is required to allow a direct comparison of the pre- and post-operative surfaces. This is prevented by the presence of the prostheses, the bone shape alteration around the implant, associated metal artefacts, and possibly a segmentation noise.

Aim

Create a novel method to automatically register pre- and post-operative femora for the direct comparison of the implant and the native bone.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 71 - 71
1 Mar 2017
Owyang D Dadia S Jaere M Auvinet E Brevadt MJ Cobb J
Full Access

Introduction

Clear operative oncological margins are the main target in malignant bone tumour resections. Novel techniques like patient specific instruments (PSIs) are becoming more popular in orthopaedic oncology surgeries and arthroplasty in general with studies suggesting improved accuracy and reduced operating time using PSIs compared to conventional techniques and computer assisted surgery. Improved accuracy would allow preservation of more natural bone of patients with smaller tumour margin.

Novel low-cost technology improving accuracy of surgical cuts, would facilitate highly delicate surgeries such as Joint Preserving Surgery (JPS) that improves quality of life for patients by preserving the tibial plateau and muscle attachments around the knee whilst removing bone tumours with adequate tumour margins. There are no universal guidelines on PSI designs and there are no studies showing how specific design of PSIs would affect accuracy of the surgical cuts.

We hypothesised if an increased depth of the cutting slot guide for sawblades on the PSI would improve accuracy of cuts.

Methods

A pilot drybone experiment was set up, testing 3 different designs of a PSI with changing cutting slot depth, simulating removal of a tumour on the proximal tibia (figure 1)

A handheld 3D scanner (Artec Spider, Luxembourg) was used to scan tibia drybones and Computer Aided Design (CAD) software was used to simulate osteosarcoma position and plan intentioned cuts (figure 1). PSI were designed accordingly to allow sufficient tumour. The only change for the 3 designs is the cutting slot depth (10mm, 15mm & 20mm). 7 orthopaedic surgeons were recruited to participate and perform JPS on the drybones using each design 2 times. Each fragment was then scanned with the 3D scanner and were then matched onto the reference tibia with customized software to calculate how each cut (inferior-superior-vertical) deviated from plan in millimetres and degrees (figure 3). In order to tackle PSI placement error, a dedicated 3D-printed mould was used.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 115 - 115
1 Mar 2017
Riviere C Shah H Howell S Aframian A Iranpour F Auvinet E Cobb J Harris S
Full Access

BACKGROUND

Trochlear geometry of modern femoral implants is designed for the mechanical alignment (MA) technique for Total Knee Arthroplasty (TKA). The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique. This could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona® implant (Zimmer, Warsaw, USA) is kinematically aligned.

METHODS

A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona® prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics® and Acrobot Modeller® software, respectively. Persona® implants were laser-scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model (figure 1). In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea (figure 2). Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 53 - 53
1 Mar 2017
Navruzov T Van Der Straeten C Riviere C Jones G Cobb J Auvinet E
Full Access

Introduction

Hip resurfacing arthroplasty (HRA) is currently regaining positive attention as a treatment of osteoarthritis in young, active individuals[1]. The procedure is complex and has low tolerance for implant malpositioning [2]. ‘Precision tools', such as imageless navigation and patient specific instruments, have been developed to assist with implant positioning but have not been shown to be fully reliable [3]. The aim of this study is to present and validate the first step of novel quality control tool to verify implant position intra-operatively. We propose that, before reaming of the femoral head, a handheld structured light 3D scanner can be used to assess the orientation and insertion point of femoral guide wire.

Methods

Guide wires were placed into the heads of 29 solid foam synthetic femora. A specially designed marker (two orthogonal parallelepipeds attached to a shaft) was inserted into the guide wire holes. Each bone (head, neck and marker) was 3D scanned twice (fig 1). The insertion point and guide wire neck angle were calculated from the marker's parameters. Reference data was acquired with an optical tracking system. The measurements calculated with the 3D scans were compared to the reference ones to evaluate the precision. The comparison of the test retest measurements done with the new method are used to evaluate intra-rater variability.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 117 - 117
1 Mar 2017
Riviere C Howell S Parratte S Vendittoli P Iranpour F Cobb J
Full Access

The mechanical alignment (MA) for Total Knee Arthroplasty (TKA) with neutral alignment goal has had good overall long-term outcomes. In spite of improvements in implant designs and surgical tools aiming for better accuracy and reproducibility of surgical technique, functional outcomes of MA TKA have remained insufficient. Therefore, alternative, more anatomicaloptions restoring part (adjusted MA (aMA) and adjusted kinematic alignment (aKA) techniques) or the entire constitutional frontal deformity (unicompartment knee arthroplasty (UKA) and kinematic alignment (KA) techniques) have been developed, with promising results. The kinematic alignment for TKA is a new and attractive surgical technique enabling a patient specific treatment. The growing evidence of the kinematic alignment mid-term effectiveness, safety and potential short falls are discussed in this paper. The current review describes the rationale and the evidence behind different surgical options for knee replacement, including current concepts in alignment in TKA. We also introduce two new classification systems for “implant alignments options” (Figure 1) and “osteoarthritic knees” (Figure 2) that would help surgeons to select the best surgical option for each patient. This would also be valuable for comparison between techniques in future research.

For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 50 - 50
1 Feb 2017
Boughton O Zhao S Arnold M Ma S Cobb J Giuliani F Hansen U Abel R
Full Access

Introduction

The increase in revision joint replacement surgery and fractures of bone around orthopaedic implants may be partly addressed by keeping bone healthy around orthopaedic implants by inserting implants with mechanical properties closer to the patient's bone properties. We do not currently have an accurate way of calculating a patient's bone mechanical properties. We therefore posed a simple question: can data derived from a micro-indenter be used to calculate bone stiffness?

Methods

We received ethical approval to retrieve femoral heads and necks from patients undergoing hip replacement surgery for research. Cortical bone from the medial calcar region of the femoral neck was cut into 3×3×6mm cuboid specimens using a diamond wafering blade. Micro-indentation testing was performed in the direction of loading of the bone using a MicroMaterials (MicroMaterials, UK) indenter, using the high load micro-indentation stage (see Figure 1). To simulate in vivo testing, the samples were kept hydrated and were not fixed or polished. From the unloading curve after indentation, the elastic modulus was calculated, using the Oliver-Pharr method using the indentation machine software. To assess which microindentation machine settings most precisely calculate the elastic modulus we varied the loading and unloading rates, load and indenter tip shape (diamond Berkovich tip, 1mm diameter Zirconia spherical tip and 1.5mm diameter ruby spherical tip).

Following this, for 11 patients' bone, we performed compression testing of the same samples after they were indented with the 1.5mm diameter ruby spherical tip to assess if there was a correlation between indentation values of apparent elastic modulus and apparent modulus values calculated by compression testing (see Figure 2). Platens compression testing was performed using an Instron 5565 (Instron, USA) materials testing machine. Bluehill compliance correction software (Instron, USA) was used to correct for machine compliance. The strain rate was set at 0.03mm/s. The apparent elastic modulus was calculated from the slope of the elastic region of the stress-strain graph. The correlation between values of apparent modulus from compression testing and indentation were analyzed using IBM SPSS Statistics 22.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 88 - 88
1 Feb 2017
Dadia S Jaere M Sternheim A Eidelman M Brevadt MJ Gortzak Y Cobb J
Full Access

Background

Dislocation is a common complication after proximal and total femur prosthesis reconstruction for primary bone sarcoma patients. Expandable prosthesis in children puts an additional challenge due to the lengthening process. Hip stability is impaired due to multiple factors: Resection of the hip stabilizers as part of the sarcoma resection: forces acts on the hip during the lengthening; and mismatch of native growing acetabulum to the metal femoral head. Surgical solutions described in literature are various with reported low rates of success.

Objective

Assess a novel 3D surgical planning technology by use of 3D models (computerized and physical), 3D planning, and Patient Specific Instruments (PSI) in supporting correction of young children suffering from hip instability after expandable prosthesis reconstruction following proximal femur resection. This innovative technology creates a new dimension of visualization and customization, and could improve understanding of this complex problem and facilitate the surgical decision making and procedure.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 26 - 26
1 Feb 2017
Leong A Iranpour F Cobb J
Full Access

Background

Surgical planning of long bone surgery often takes place using outdated 2D axes on 2D images such as long leg standing X-rays. This leads to errors and great variation between intra- and inter- observers due to differing frames of reference.

With the advent of 3D planning software, researchers developed 3D axes of the knee such as the Flexion Facet Axis (FFAx) and Trochlear Axis (TrAx), and these proved easy to derive and reliable. Unlike 2D axes, clinicians and scientists can use a single 3D axis to obtain measurements relative to other 3D axes, in all three planes Deriving a 3D axis also does not require an initial frame of reference, such as in trying to derive the 2D Posterior Condylar Axis (PCAx), whereby a slight change in slice orientation will affect its position.

However, there is no 3D axis derived for the tibial plateau yet. Measurements of tibial joint line obliquity are with a 2D axis drawn on AP long leg standing X-rays. The same applies to tibial plateau rotation, as measured by 2D axes drawn on axial CT/MRI slices.

this study aimed to to develop a novel new 3D axis for the tibial plateau to quantify both tibial plateau joint line obliquity and axial rotation.

Methods

Materialise software version 8.0 (Materialise Inc., Belgium) handled segmentation of CT data and for analysis of bony morphology. A line joining the centroids of the medial and lateral tibial plateaus formed the TCAx (Fig1). A line joining the middle coordinate of the TCAx, to the centre of the best-fit sphere between the medial and lateral malleolus formed the Tibial Mechanical Axis (TMAx). A standard frame of reference aligned 72 tibias with the TCAx horizontal in the axial view, and the TMAx aligned parallel to the global reference coordinate system vertical axis. Tibial joint line obliquity was the angle between the TCAx and TMAx on the medial side, also known as the Medial Tibial Plateau Angle (MPTA)(Fig2). The authors compared reliability and accuracy of the TCAx against three other rotational axes of the tibia as described in the literature.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 76 - 76
1 Feb 2017
Cobb J Wiik A Brevadt MJ Auvinet E Van Der Straeten C
Full Access

Intro

Across much of medicine, activity levels predict life expectancy, with low levels of activity being associated with increased mortality, and higher levels of activity being associated with longer healthier lives. Resurfacing is a technically demanding procedure that has suffered significant fallout from the failure of a couple of poorly performing designs. However strong evidence associates resurfacing with improved life expectancy in both the short and longer term following surgery.

We wondered if there was any relationship between the function of hips following surgery and the extent of that surgery. Could a longer stem inside the femur be the reason for a slightly reduced step length? We proposed the nul hypothesis that there was no clinically relevant difference between stem length and gait.

Method

After informed consent each subject was allowed a 5 minute acclimatisation period at 4km/hr on the instrumented treadmill (Kistler Gaitway, Amherst, NY). Their gait performance on an increasing incline at 5, 10 and 15%. At all 0.5km incremental intervals of speed, the vertical component of the ground reaction forces, center of pressure and temporal measurements were collected for both limbs with a sampling frequency of 100Hz over 10sec.

They were also asked to log onto our JointPRO website and report their function using Oxford, EQ5D, and Imperial scores.

Owing to current restrictions in indications, the patient groups selected were not comparable. However, from our database of over 800 patients who have been through the gait lab. 82 subjects were tested from 2 diagnostic groups (29 conventional THR, 27 hip resurfacing) and compared with a slightly younger group of 26 healthy controls. Patients were excluded if less than 12 months postop, or with any other documented joint disease or medical comorbidities which might affect gait performance.

Body weight scaling was also applied to the outputted mechanical data to correct for mass differences. All variables for each subject group were compared to each other using an analysis of variance (ANOVA) with Tukey post hoc test with significance set at α=0.05.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 120 - 120
1 Feb 2017
Leong A Iranpour F Cobb J
Full Access

Background

Constitutional knee varus increases the risk of medial OA disease due to increase in the knee adduction moment and shifting of the mechanical axis medially.

Hueter-Volkmann's law states that the amount of load experienced by the growth plate during development influences the bone morphology. For this reason, heightened sports activity during growth is associated with constitutional varus due to added knee adduction moment. In early OA, X-rays often show a flattened medial femoral condyle extension facet (EF). However, it is unknown whether this is a result of osteoarthritic wear, creep deformation over decades of use, or an outcome of Hueter-Volkmann's law during development. A larger and flattened medial EF can bear more weight, due to increased load distribution. However, a flattened EF may also extrude the meniscus, leading meniscus degeneration and joint failure.

Therefore, this study aimed to investigate whether varus knees have flattened medial EFs of both femur and tibia in a cohort of patients with no signs yet of bony attrition.

Methods

Segmentation and morphology analysis was conducted using Materialise software (version 8.0, Materialise Inc., Belgium). This study excluded knees with bony attrition of the EFs based on Ahlbäck criteria, intraoperative findings, and operation notes history. Standard reference frames were used for both the femur and tibia to ensure reliable and repeatable measurements. The hip-knee-angle (HKA) angle defined varus or valgus knee alignment.

Femur: The femoral EFs and flexion facets (FFs) had best-fit spheres fitted with 6 repetitions. (Fig1)

Tibia: The slopes of the antero-medial medial tibial plateau were approximated using lines. (fig2)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 34 - 34
1 Feb 2017
Brevadt MJ Wiik A Aqil A Auvinet E Loh C Johal H Van Der Straeten C Cobb J
Full Access

Introduction

Financial and human cost effectiveness is an increasing evident outcome measure of surgical innovation. Considering the human element, the aim is to restore the individual to their “normal” state by sparing anatomy without compromising implant performance. Gait lab studies have shown differences between different implants at top walking speed, but none to our knowledge have analysed differing total hip replacement patients through the entire range of gait speed and incline to show differences. The purpose of this gait study was to 1) determine if a new short stem femoral implant would return patients back to normal 2) compare its performance to established hip resurfacing and long stem total hip replacement (THR) implants.

Method

110 subjects were tested on an instrumented treadmill (Kistler Gaitway), 4 groups (short-stem THR, long-stem THR, hip resurfacing and healthy controls) of 28, 29, 27, and 26 respectively. The new short femoral stem patients (Furlong Evolution, JRI) were taken from the ongoing Evolution Hip trial that have been tested on the treadmill minimum 12months postop. The long stem total hip replacements and hip resurfacing groups were identified from our 800+ patient treadmill database, and only included with tests minimum 12 months postop and had no other joint disease or medical comorbidities which would affect gait performance.

All subjects were tested through their entire range of gait speeds and incline after having a 5 minute habituation period. Speed were increased 0.5kmh until maximum walking speed achieved and inclines at 4kmh for 5,10,15%. At all incremental intervals of speed 10seconds ere collected, including vertical ground reaction forces (normalized to body mass), center of pressure and temporal measurements were for both limbs (fs=100Hz). Symmetry Index(SI) were calculated on a range of features comparing leg with implanted hip to the contralateral normal hip. Group means for each feature for each subject group were compared using an analysis of variance (ANOVA) with Tukey post-hoc test with significance set at α=0.05.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 103 - 103
1 Feb 2017
Doyle R Boughton O Plant D Desoutter G Cobb J Jeffers J
Full Access

Appropriate seating of acetabular and femoral components during total hip arthroplasty (THA) surgery is essential for implant longevity. Additionally, the appropriate assembly of components is essential for proper function, for example to prevent taper corrosion or acetabular component disassembly. However the current understanding of the forces and energies imparted during surgery is sparse. Perhaps more importantly, there exists a risk that much of the preclinical testing performed to develop implants and surgical techniques do not apply the appropriate boundary conditions to surgical impaction and component assembly, leading to the possibility of huge overestimations in impaction force.

This in-vitro study examines the influence of mechanical boundary condition parameters that affect the forces imparted to implant and patient during THA surgery; including the attenuation of two common types of acetabular cup introducer and the hard tissue (pelvic) boundary conditions.

A drop tower test-rig that allows full customisation of impaction and implantation parameters was built, with pelvis boundary conditions simulated with silicone cylinders using adjustable geometry to vary stiffness and damping. The least stiff setup represented a large, unbolstered patient on the operating table. A medium stiffness setup represented a slim, well bolstered patient. An extremely stiff, metal boundary was selected to replicate the pre-clinical testing conditions usually employed in implant or instrument testing, where impact testing takes place in a vice, or metal test frame. For each of these stiffness scenarios, piezo-load cells and LVDTs were used to measure forces and displacement of the pelvis model. We also investigated the use of two common implant introducers; a straight and a bent introducer. The latter is often used for large patients or for specific approaches (e.g. direct anterior). In total, 180 drop weight tests and 120 strikes by an orthopaedic surgeon were measured.

For the drop weight testing the peak force measured varied between 7.6kN and 0.4kN for stiffest and softest support conditions respectively. When the surgeon applied the impact strike manually, the range was between 13.2kN and 0.8kN for the stiffest and softest support conditions respectively (Figure 1). Using the bent introducer attenuated the load by between 13.0% and 115% compared to the straight introducer (Figure 1).

Pelvic boundary conditions are overlooked in much of the literature on implant seating or assembly in THA surgery. In laboratory settings with impaction performed on a workbench or frame of a materials testing machine, high forces may be sufficient to seat or assemble implants. However our data show that these high forces will not be replicated in vivo, and this could be a causative factor in poor assembly of acetabular components or femoral head/stem tapers, which can lead to clinical problems like disassembly or crevice corrosion.

We found the geometry of the introducer and the stiffness of the pelvis support had significant attenuating influence. We also found that the surgeon does not compensate for these differences, resulting in vast differences in the delivered strike force. It is recommended these factors are carefully considered when designing surgical tools and in particular conducting pre-clinical testing.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 22 - 22
1 Feb 2017
Huixiang W Newman S Jones G Sugand K Cobb J Auvinet E
Full Access

Introduction

Because of the low cost and easy access, surgical video has become a popular method of acquiring surgical skills outside operating rooms without disrupting normal surgical flow. However, currently existing video systems all use a single point of view (POV). Some complex orthopedic procedures, such as joint replacement, require a level of accuracy in several dimensions. So single and fixed POV video may not be enough to provide all the necessary information for educational and training purposes. The aim of our project was to develop a novel multiple POV video system and evaluate its efficacy as an aid for learning joint replacement procedure compared with traditional method.

Materials and Methods

Based on the videos of a hip resurfacing procedure performed by an expert orthopedic surgeon captured by 8 cameras fixed all around the operating table, we developed a novel multiple POV video system which enables users to autonomously switch between optimal viewpoints (Figure 1). 30 student doctors (undergraduate years 3–5 and naive to hip resurfacing procedure) were recruited and randomly allocated to 2 groups: experiment group and control group, and were assigned to learn the procedure using multiple or single POV video systems respectively. Before learning they were first asked to complete a multiple choicetest designed using a modified Delphi technique with the advice and feedback sought from 4 experienced orthopedic surgeons to test the participants' baseline knowledge of hip resurfacing procedure. After video learning, they were asked to answer the test again to verify their gained information and comprehension of the procedure, followed by a 5-point Likert-scale questionnaire to demonstrate their self-perception of confidence and satisfaction with the learning experience. The scores in the 2 tests and in the Likert-scale questionnaire were compared between 2 groups using Independent-Samples t-test (for normally distributed data) or Mann-Whitney U test (for non-normally distributed data). Statistical significance was set as p<0.05.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 130 - 130
1 Feb 2017
Ma S Goh E Patel B Jin A Boughton O Cobb J Hansen U Abel R
Full Access

Introduction

Bisphosphonates (BP) are the first-line therapy for preventing osteoporotic fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate use is associated with over-suppression of remodeling. Animal studies have reported that BP therapy is associated with accumulation of micro-cracks (Fig. 1) and a reduction in bone mechanical properties, but the effect on humans has not been investigated. Therefore, our aim was to quantify the mechanical strength of bone treated with BP, and correlate this with the microarchitecture and density of micro-damage in comparison with untreated osteoporotic hip-fractured and non-fractured elderly controls.

Methods

Trabecular bone cores from patients treated with BP were compared with patients who had not received any treatment for bone osteoporotic disease. Non-fractured cadaveric femora from individuals with no history of bone metabolic disease were also used as controls. Cores were imaged in high resolution (∼1.3µm) using Synchrotron X-ray tomography (Diamond Light Source Ltd.) The scans were used for structural and material analysis, then the cores were mechanically tested in compression. A novel classification system was devised to characterise features of micro-damage in the Synchrotron images: micro-cracks, diffuse damage and perforations. Synchrotron micro-CT stacks were visualised and analysed using ImageJ, Avizo and VGStudio MAX.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 3 - 3
1 Feb 2017
Abel R Hansen U Cobb J
Full Access

Bones are thought to become fragile with advancing age due to a loss of mass and structure. However, there are important aspects of bone fragility and fracture that cannot be explained simply by a loss of bone: 30% of all patients told they have healthy bone based on bone mineral density (BMD) measurements go on to fracture.

It has been suggested that increased fracture risk might also be due to ageing at the nanoscale, which might deteriorate the overall mechanical properties of a bone. However, it is not clear how mechanics at the level of the collagen-mineral matrix relate to mechanical properties of the whole bone, or whether nano-mechanics contribute to fracture risk. In order to answer these questions our group is developing state of the art methods for analysing the structure and function of the collagen mineral matrix under loading.

To image the collagen mineral matrix we obtained beam time on a synchrotron particle accelerator at the Diamond Light Source (Didcot, UK). Electrons are accelerated to near light speed by powerful electromagnets, then slowed to create high energy monochromatic X-Ray beams. Through a combination of X-Ray computed tomography and X-Ray diffraction we have been able to image the collagen/mineral matrix. Furthermore, using in situ loading experiments it has been possible to visualise collagen fibrillar sliding and mineral crystal structure.

Our group is analysing how age related changes in nano-structure affect bone mechanical behaviour. As well as comparing fragility fracture patients with ‘healthy’ age matched controls to investigate whether ageing at the nano-scale could increase fracture risk. We are also assessing the effect of common treatments for bone fragility (e.g. bisphosphonate) on nano-mechanics.

Unfortunately the expense and high radiation dose associated with synchrotron imaging prevents the technology from being adapted for patients. Therefore the next step will be to identify and test tools that can be used to indirectly assess bone chemistry and mechanical properties at point of care (e.g. laser spectroscopy and indentation). The data could be used to improve the diagnosis, monitoring and treatment of bone fragility.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 11 - 11
1 Feb 2017
Harris S Dhaif F Iranpour F Aframian A Auvinet E Cobb J Howell S Riviere C
Full Access

BACKGROUND

Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction [1]. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction [1].

Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment.

METHODS

The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects.

Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments - (fig.1). Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 21 - 21
1 Feb 2017
Auvinet E Multon F Manning V Cobb J
Full Access

Background

Osteoarthritis and the pain associated with it result in gait pattern alteration, in particularly gait asymmetry when the disease is unilateral [1–2]. The quantification of such asymmetry could assist with the diagnosis and follow up. Various asymmetry indices have been proposed to compare the spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. One, the Continuous Relative Phase [3] compares the joints angle and its derivatives to assess the gait asymmetry during the gait cycle. However, the indices rely on marker based gait measurement systems that are costly and generally require manual examination, calibration procedures and the precise placement of sensors/markers on the body of the patient.

Aim

Create an automatic method to assess gait asymmetry with low cost depth camera system like Kinect.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 72 - 72
1 Dec 2016
Cobb J
Full Access

Lateral meniscal failure and secondary valgus with lateral compartment arthrosis is quite common in the developed world. The varus knee is the common phenotype of the ‘jock’ of both genders, while the valgus knee is a common consequence of lateral meniscal tear, skiing or ‘catwalk’ life. Occurring more commonly in ‘flamingo’ phenotypes, lateral meniscal failure can be disabling, entirely preventing high heels being worn for instance.

Indications

Lateral UKA is indicated for most valgus knees, and is substantially safer than TKA. ACL integrity is not essential in older people, as the patello-femoral mechanism is in line with the lateral compartment. Severe valgus with substantial bone loss is not a contraindication, if the deformity is simply angular. As long as there is not marked subluxation, fixed flexion deformity invariably corrects after notch osteophyte removal from femur and tibia.

Combinations

Lateral UKA can be combined safely with PFJA: performed through a lateral approach, this is a safe and conservative procedure. ACL integrity is not essential – reconstruction can be undertaken simultaneously, if necessary. Combining lateral UKA with medial UKA is only rarely needed, and sometimes needs ACL reconstruction too. Adding a medial UKA in under 5 years usually results from overcorrection of the valgus.

Mid Term Results, at a median of 7 years postop: Between 2005 to 2009, 64 knees in 58 patients had a lateral UKA using a device designed for the lateral compartment. This included 41 females and 17 males with a mean age of 71 years at the time of surgery (range 44–92). Thirty-nine patients underwent surgery on the right knee and 6 underwent bilateral procedures, of which four were performed under a single anesthetic. Primary lateral compartment osteoarthritis was the primary diagnosis in 63 cases with secondary osteoarthritis to a lateral tibial plateau fracture the indication in one patient.

At 119 months follow up, the predicted cumulative survival was 0.97. With re-operation as an endpoint, 11% of patients within the study had undergone re-operation with a predicted cumulative survival of 0.81 at 119 months. This compares well with historic fixed bearing series.

Preoperative OKS scores were available for 50 knees, scores were available for 63 knees at 9–48 months and 52 knees at 61–119 months post index operation. There was a significant improvement in the OKS between the preoperative scores (median 26 range 9–36) and early postoperative time points of 9–48 months, (median 42 range 23–48) (p<0.001). At the later postoperative time point of 61–119 months the score had been maintained (42 range 10–48).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 117 - 117
1 Dec 2016
Cobb J
Full Access

Patients presenting with arthrosis following high tibial osteotomy (HTO) pose a technical challenge to the surgeon. Slight overcorrection during osteotomy sometimes results in persisting medial unicompartmental arthrosis, but with a valgus knee. A medial UKA is desirable, but will result in further valgus deformity, while a TKA in someone with deformity but intact cruciates may be a disappointment as it is technically challenging. The problem is similar to that of patients with a femoral malunion and arthrosis. The surgeon has to choose where to make the correction. An ‘all inside’ approach is perhaps the simplest. However, this often means extensive release of ligaments to enable ‘balancing’ of the joint, with significant compromise of the soft tissues and reduced range of motion as a consequence.

As patients having HTO in the first place are relatively high demand, we have explored a more conservative option, based upon our experience with patient matched guides.

We have been performing combined deformity correction and conservative arthroplasty for 5 years, using PSI developed in the MSk Lab. We have now adapted this approach to the failed HTO. By reversing the osteotomy, closing the opening wedge, or opening the closing wedge, we can restore the obliquity of the joint, and preserve the cruciate ligaments.

Technique: CT based plans are used, combined with static imaging and on occasion gait data. Planning software is then used to undertake the arthroplasty, and corrective osteotomy.

In the planning software, both tibial and femoral sides of the UKA are performed with minimal bone resection.

The tibial osteotomy is then reversed to restore joint line obliquity. The placing of osteotomy, and the angling and positioning in relation to the tibial component are crucial. This is more important in the opening of a closing wedge, where the bone but is close to the keel cut.

The tibial component is then readjusted to the final ‘Cartier’ angle.

Patient guides are then made. These include a tibial cutting guide which locates both the osteotomy and the arthroplasty.

At operation, the bone cuts for the arthroplasty are made first, so that these cuts are not performed on stressed bone. The cuts are not in the classical alignment as they are based upon deformed bone so the use of patient specific guides is a real help. The corrective osteotomy is then performed. If a closing wedge is being opened, then a further fibular osteotomy is needed, while the closing of an opening wedge is an easier undertaking.

Six cases of corrective osteotomy and partial knee replacement are presented. In all cases, the cruciates have been preserved, together with normal patello-femoral joints.

Patient satisfaction is high, because the deformity has been addressed, restoring body image. Gait characteristics are those of UKA, as the ACL has been preserved and joint line obliquity restored.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 45 - 45
1 Nov 2016
Leong A Amis A Jeffers J Cobb J
Full Access

Are there any patho-anatomical features that might predispose to primary knee OA? We investigated the 3D geometry of the load bearing zones of both distal femur and proximal tibias, in varus, straight and valgus knees. We then correlated these findings with the location of wear patches measured intra-operatively.

Patients presenting with knee pain were recruited following ethics approval and consent. Hips, knees and ankles were CT-ed. Straight and Rosenburg weight bearing X-Rays were obtained. Excluded were: Ahlbäck grade “>1”, previous fractures, bone surgery, deformities, and any known secondary causes of OA. 72 knees were eligible. 3D models were constructed using Mimics (Materialise Inc, Belgium) and femurs oriented to a standard reference frame. Femoral condyle Extension Facets (EF) were outlined with the aid of gaussian curvature analysis, then best-fit spheres attached to the Extension, as well as Flexion Facets(FF). Resected tibial plateaus from surgery were collected and photographed, and Matlab combined the average tibia plateau wear pattern.

Of the 72 knees (N=72), the mean age was 58, SD=11. 38 were male and 34 female. The average hip-knee-ankle (HKA) angle was 1° varus (SD=4°). Knees were assigned into three groups: valgus, straight or varus based on HKA angle. Root Mean Square (RMS) errors of the medial and lateral extension spheres were 0.4mm and 0.2mm respectively. EF sphere radii measurements were validated with Bland-Altman Plots showing good intra- and interobserver reliability (+/− 1.96 SD). The radii (mm) of the extension spheres were standardised to the medial FF sphere. Radii for the standardised medial EF sphere were as follows; Valgus (M=44.74mm, SD=7.89, n=11), Straight (M=44.63mm, SD=7.23, n=38), Varus (M=50.46mm, SD=8.14, n=23). Ratios of the Medial: Lateral EF Spheres were calculated for the three groups: Valgus (M=1.35, SD=.25, n=11), Straight (M=1.38, SD=.23, n=38), Varus (M=1.6, SD=.38, n=23). Data was analysed with a MANOVA, ANOVA and Fisher's pairwise LSD in SPSS ver 22, reducing the chance of type 1 error. The varus knees extension facets were significantly flatter with a larger radius than the straight or valgus group (p=0.004 and p=0.033) respectively. In the axial view, the medial extension facet centers appear to overlie the tibial wear patch exactly, commonly in the antero-medial aspect of the medial tibial plateau.

For the first time, we have characterised the extension facets of the femoral condyles reliably. Varus knees have a flatter medial EF even before the onset of bony attrition. A flatter EF might lead to menisci extrusion in full extension, and early menisci failure. In addition, the spherical centre of the EF exactly overlies the wear patch on the antero-medial portion of the tibia plateau, suggesting that a flatter medial extension facet may be causally related to the generation of early primary OA in varus knees.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 58 - 58
1 May 2016
Brevadt M Manning V Wiik A Aqil A Dadia S Cobb J
Full Access

Introduction

Femoral component design is a key part of hip arthroplasty performance. We have previously reported that a hip resurfacing offered functional improved performance over a long stem. However resurfacing is not popular for many reasons, so there is a growing trend towards shorter femoral stems, which have the added benefit of ease of introduction through less invasive incisions. Concern is also developing about the impact of longer stems on lifetime risk of periprosthetic fracture, which should be reduced by the use of a shorter stem. For these reasons, we wanted to know whether a shorter stem offered any functional improvement over a conventional long stem. We surmised that longer stems in hip implants might stiffen the femoral shaft, altering the mechanical properties.

Materials and Methods

From our database of over 800 patients who have been tested in the lab, we identified 95 patients with a hip replacement performed on only one side, with no other lower limb co-morbidities, and a control group:

19 with long stem implant, age 66 ± 14 (LONG)

40 with short stem implant, age 69 ± 9 (SHORT)

26 with resurfacing, age 60 ± 8 (RESURF)

43 healthy control with no history of arthroplasty, age 59 ± 10 (CONTROL)

All groups were matched for BMI and gender.

Participants were asked to walk on an instrumented treadmill. Initially a 5 minute warm up at 4 km/h, then tests at increasing speed in 0.5 km/h increments. Maximum walking speed was determined by the patients themselves, or when subjects moved from walking to running.

Ground reaction forces (GRF) were measured in 20 second intervals at each speed. Features were calculated based on the mean GRF for each trial, and on symmetry measures such as first peak force (heel strike), second peak force (toe-off), the rate at which the foot was loaded and unloaded, and step length.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 68 - 68
1 May 2016
Jones G Clarke S Jaere M Cobb J
Full Access

The treatment of patients with osteoarthritis of the knee and associated extra-articular deformity of the leg is challenging. Current teaching recognises two possible approaches: (1) a total knee replacement (TKR) with intra-articular bone resections to correct the malalignment or (2) an extra-articular osteotomy to correct the malalignment together with a TKR (either simultaneously or staged).

However, a number of these patients only have unicompartmental knee osteoarthritis and, in the absence of an extra-articular deformity would be ideal candidates for joint preserving surgery such as unicompartmental knee replacement (UKR) given its superior functional outcome and lower cost relative to a TKR [1).

We report four cases of medial unicondylar knee replacement, with a simultaneous extra-articular osteotomy to correct deformity, using novel 3D printed patient-specific guides (Embody, UK) (see Figure 1). The procedure was successful in all four patients, and there were no complications. A mean increase in the Oxford knee score of 9.5, and in the EQ5D VAS of 15 was observed.

To our knowledge this is the first report of combined osteotomy and unicompartmental knee replacement for the treatment of extra-articular deformity and knee osteoarthritis. This technically challenging procedure is made possible by a novel 3D printed patient-specific guide which controls osteotomy position, degree of deformity correction (multi-plane if required), and orientates the saw-cuts for the unicompartmental prosthesis according to the corrected leg alignment.

Using 3D printed surgical guides to perform operations not previously possible represents a paradigm shift in knee surgery. We suggest that this joint preserving approach should be considered the preferred treatment option for suitable patients.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 51 - 51
1 May 2016
Iranpour F Auvinet E Harris S Cobb J
Full Access

Patellofemoral joint (PFJ) arthroplasty is traditionally performed using mechanical jigs to align the components, and it is hard to fine tune implant placement for the individual patient. These replacements have not had the same success rate as other forms of total or partial knee replacement surgery1.

Our team have developed a computer assisted planning tool that allows alignment of the implant based on measurements of the patient's anatomy from MRI data with the aim of improving the success of patellofemoral joint arthroplasty.

When planning a patellofemoral joint arthroplasty, one must start from the premise that the original joint is either damaged as a result of osteoarthritis, or is dysplastic in some way, deviating from a normal joint. The research aimed to plan PFJ arthroplasty using knowledge of the relationship between a normal PFJ (trochlear groove, trochlea axis and articular surfaces) and other aspects of the knee2, allowing the plan to be estimated from unaffected bone surfaces, within the constraints of the available trochlea.

In order to establish a patient specific trochlea model a method was developed to automatically compute an average shape of the distal femur from normal distal femur STL files (Fig.1). For that MRI scans of 50 normal knees from osteoarthritis initiative (OAI) study were used. Mimics and 3-matic software (Materialise) packages were used for segmentation and analysis of 3D models. Spheres were fitted to the medial and lateral flexion facets for both average knee model and patient knee model. The average knee was rescaled and registered in order to match flexion facet axis (FFA) distance and FFA midpoint of the patient (Fig.2). The difference between the patient surface and the average knee surface allow to plan the patella groove alteration.

The Patella cut is planned parallel to the plane fitted to the anterior surface of the patella. The patella width/thickness ratio (W/T=2) is used to predict the post reconstruction thickness3. The position of the patella component (and its orientation if a component with a median ridge is used) is also planned.

The plan is next fine-tuned to achieve satisfactory PFJ kinematics4 (Fig.3). This will be complemented by intraoperative PFJ tracking which assists with soft tissue releases. PFJ kinematics is evaluated in terms of patella shift, tilt and deviation from the previously described circular path of the centre of the patella.

The effect of preoperative planning on PFJ tracking and soft tissue releases is being examined. Additional study is needed to evaluate whether planning and intraoperative kinematic measurements improve the clinical outcome of PFJ arthroplasty.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 90 - 90
1 May 2016
Cobb J Collins R Brevadt M Auvinet E Manning V Jones G
Full Access

Normal human locomotion entails a rather narrow base of support (BoS), of around 12cm at normal walking speeds. This relatively narrow gait requires good balance, and is beneficial, as it minimises the adduction moment at the knee. Normal knees have a slightly oblique joint line, and slight varus, which allow the normal human to walk rapidly with a narrow BoS. Patients with increased varus and secondary osteoarthritis have a broader BoS, which exacerbates the excessive load, making walking painful and ungainly.

We wondered if there would be a difference between the base of support of patients whose knee kinematics had been preserved, by retaining the native jointline obliquity and the acl, in comparison with those whose alignment had been altered to a mechanically correct ‘neutral’ alignment.

Materials and Methods

Of 201 patients measured following knee arthroplasty, 31 unicondylar patients and 35 total knee patients, with a single primary arthroplasty, and no co-morbidities, over 1 year post-operatively were identified. Two control groups of controls, a younger cohort of 112 people and 17 in an age matched older cohort.

All operations were performed by the same surgeon. The total knees were cruciate retaining devices, inserted in mechanical alignment, and the unicondylar knees were inserted retaining the native alignment and joint-line obliquity.

The gait of all subjects was analysed on an instrumented, calibrated treadmill with underlying force plates. Patients start by walking at a comfortable speed for them for 5 minutes, before the speed of the treadmill is increased at 1/2 km/h increments until maximum walking speed obtained, spending 30 seconds at each. After the flat test, it was then repeated on a downhill slope of 6°.

Base of Support is interpreted as the distance between the centre point of heel strike and toe off from one foot to that of the other.

The top walking speed in the unicondylar group was significantly greater than that of the total knee group, as we reported in 2013.

TKA patients have an average BoS of 14cm, while UKA patients and controls have a 12cm BoS. The BoS did not reduce with speed. This 2cm, or 17% increase in BoS is significant. Shapiro-Wilk tests demonstrate a normal distribution to the results, and ANOVA testing reveals a significant difference (p<0.05) within the groups between the speeds of 4.5 to 9. Post-Hoc Bonferroni testing reveal a significant difference between the TKA group and each of the other three groups.

On the downhill test (figure 1), the mean BoS in the TKA group increased to 16cm. This increase is highly significant, with a p value of <0.001, while the increase in the UKA group at higher speeds failed to reach significance, and the controls both stayed at 12cm. 6 Bi-uni knees tested acted just like the UKAs.

Discussion

A narrow base of support minimises excessive loads across the joint line. Maintenance of jointline obliquity and an ACL enables this feature to be returned to normal following uni, or bi-uni, while a well aligned TKA seems to prevent it.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 89 - 89
1 May 2016
Cobb J Collins R Wiik A Brevadt M Auvinet E Manning V
Full Access

Any arthroplasty that offers superior function needs to be assessed using metrics that are capable of detecting those functions. The Oxford Hip Score (OHS), the Harris Hip Score (HHS) and WOMAC are patient reported outcome measures (PROMs) with well documented ceiling effects: following hip arthroplasty, many patients are clustered close to full marks following surgery. Two recent well conducted randomised clinical trials made exactly this error, by using OHS and WOMAC to detect a differences in outcome between hip resurfacing and hip arthroplasty despite published data already showing in single arm studies that these two procedures score close to full marks using either of these PROMS.

We have already reported that patients with hip resurfacing arthroplasty (HRA) were able to walk faster and with more normal stride length than patients with well performing hip replacements. In an attempt to relate this functional superiority to an outcome measure that does not rely upon the use of expensive machinery, we developed a patient centred outcome measure (PCOM) based upon a method developed by Philip Noble's group, and the University of Arizona's Metabolic Equivalent of Task Index (MET). This PCOM allows patients to select the functions that matter to them personally against which the success of their own operation will be measured, with greater sensitivity to intensity than is achieved by the UCLA.

Our null hypothesis was that this PCOM would be no more successful than the PROMs in routine use in discriminating between types of hip arthroplasty, and that there would be no difference in gait between patients following these procedures.

From our database of over 800 patients whose gait has been assessed in the lab, we identified 22 patients with a well performing conventional THAs, and matched them for age, sex, BMI, height, preop diagnosis with 22 patients with a well performing conventional THA. Both were compared with healthy controls using the novel PCOM and in a gait lab.

Results

PROMs for the two groups were almost identical, while HRA scored higher in the PCOM. The 9% difference was significant (p<0.05). At top walking speed, HRA were 10% faster, with a 9% longer stride length, both of these metrics also reached significance.

Discussion

Function following hip replacement is very good, with high satisfaction rates, but the use of a PCOM, and objective measures of function reveal substantial inferiority of THA over THR in two well matched groups. This 9% difference is well over the 5% difference that is considered ‘clinically relevant’. When coupled with the very strong data regarding life expectancy and infection, this functional data makes a compelling case for the use of resurfacing in active adults.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 29 - 29
1 May 2016
Harris S Iranpour F Riyat H Cobb J
Full Access

Introduction

The trochlea of a typical patellofemoral replacement or anterior flange of a total knee replacement usually extends past the natural trochlea and continues onto the femoral anterior cortex. One reason for this is that it allows a simple patella button to be permanently engaged in the trochlea groove in an attempt to ensure stability. On the natural patella, the apex helps to guide it into the trochlea groove as the knee moves from full extension into flexion.

The aim is to study whether a generalised patella can be created that is close in form to a healthy patella.

Method

MRI scans were taken of 30 patellae. Characteristics of these patellae (height, width, thickness, apex angle) were measured. The apex angle was found to be similar between patellae (mean=126 degrees, sd = 8.8), as were the ratios between height and width (mean width/height = 1.05, sd = 0.07) and between thickness and width (mean width/thickness = 1.8, sd = 0.19).

These patellae were then segmented to create a surface including cartilage, resulting in 30 STL (stereolithography) files in which the surfaces are represented by triangle meshes.

To design the average patella the individual patellae were aligned to a standard frame of reference by placing a set of landmarks on the proximal/distal, medial/lateral and anterior/posterior extents of each (fig.1). The vertical axis was defined as passing parallel to the proximal/distal points and the horizontal as passing parallel to the medial/lateral points when looking along the computed vertical axis. The origin centre of the frame of reference was chosen to be mid-way between these points. The mean width was then computed and each patella scaled linearly around the origin to give them all equal width.

All the aligned patellae were then averaged together to provide a composite cartilaginous patella. The averaging process was achieved by taking one patella as a seed. The patella chosen for seed was that whose parameters were closest to the average width, height and thickness. An approximately normal vector was passed a point ‘P’ on the seeds, and the points at which these intersected the other models were then determined. The closest intersection point to ‘P’ on each model was chosen and these averaged together. ‘P’ is then replaced in the model with this average point. The averaging process then continues with all the remaining points on the seed model in the same manner to build the average models.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 30 - 30
1 May 2016
Newman S Clarke S Harris S Cobb J
Full Access

Introduction

Patient Specific Instrumentation (PSI) has the potential to allow surgeons to perform procedures more accurately, at lower cost and faster than conventional instrumentation. However, studies using PSI have failed to convincingly demonstrate any of these benefits clinically. The influence of guide design on the accuracy of placement of PSI has received no attention within the literature.

Our experience has suggested that surgeons gain greater benefit from PSI when undertaking procedures they are less familiar with. Lateral unicompartmental knee replacement (UKR) is relatively infrequently performed and may be an example of an operation for which PSI would be of benefit. We aimed to investigate the impact on accuracy of PSI with respect to the area of contact, the nature of the contact (smooth or studded guide surfaces) and the effect of increasing the number of contact points in different planes.

Method

A standard anatomy tibial Sawbone was selected for use in the study and a computed tomography scan obtained to facilitate the production of PSI. Nylon PSI guides were printed on the basis of a lateral UKR plan devised by an orthopaedic surgeon. A control PSI guide with similar dimensions to the cutting block of the Oxford Phase 3 UKR tibial guide was produced, contoured to the anterior tibial surface with multiple studs on the tibial contact surface. Variants of this guide were designed to assess the impact of design features on accuracy. These were: a studded guide with a 40% reduction in tibial contact area, a non-studded version of the control guide, the control guide with a shim to provide articular contact, a guide with an extension to allow distal referencing at the ankle and a guide with a distal extension and an articular shim. All guides were designed with an appendage that facilitated direct attachment to a navigation machine (figure 1). 36 volunteers were asked to place each guide on the tibia with reference to a 3D model of the operative plan. The order of placement was varied using a counterbalanced latin square design to limit the impact of the learning effect. The navigation machine recorded deviations from the plan in respect of proximal-distal and medial-lateral translations as well as rotation around all three axes. Statistical analysis was performed on the compound translational and rotational errors for each guide using ANOVA with Bonferroni correction with statistical significance at p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 36 - 36
1 May 2016
Henckel J Rodriguez-y-Baena F Jakopec M Harris S Barrett A Gomes M Alsop H Davies B Cobb J
Full Access

Introduction

We report 10-year clinical outcomes of a prospective randomised controlled study on uni-compartmental knee arthroplasty using an active constraint robot.

Measuring the clinical impact of CAOS systems has generally been based around surrogate radiological measures with currently few long-term functional follow-up studies reported. We present 10 year clinical follow up results of robotic vs conventional surgery in UKA.

Material and methods

The initial study took place in 2004 and included 28 patients, 13 in the robotic arm and 15 in the conventional arm. All patients underwent medial compartment UKA using the ‘OXFORD’ mobile bearing knee system. Clinical outcome at 10 years was scored using the WOMAC scoring system.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 67 - 67
1 May 2016
Jones G Jaere M Clarke S Cobb J
Full Access

Introduction

Opening wedge high tibial osteotomy is an attractive surgical option for physically active patients with early osteoarthritis and varus malalignment. Unfortunately use of this surgical technique is frequently accompanied by an unintended increase in the posterior tibial slope, resulting in anterior tibial translation, and consequent altered knee kinematics and cartilage loading(1).

To address this unintended consequence, it has been recommended that the relative opening of the anteromedial and posterolateral corners of the osteotomy are calculated pre-operatively using trigonometry (1). This calculation assumes that the saw-cut is made parallel to the native posterior slope; yet given the current reliance on 2D images and the ‘surgeon's eye’ to guide the saw-cut, this assumption is questionable.

The aim of this study was to explore how accurately the native posterior tibial slope is reproduced with a traditional freehand osteotomy saw-cut, and whether novel 3D printed patient-specific guides improve this accuracy.

Methods

26 fourth year medical students with no prior experience of performing an osteotomy were asked to perform two osteotomy saw-cuts in foam cortical shell tibiae; one freehand, and one with a 3D printed surgical guide (Embody, London) that was designed using a CT scan of the bone model. The students were instructed to aim for parallelity with a hinge pin which had been inserted (with the use of a highly conforming 3D printed guide) parallel to the posterior slope of the native joint.

For the purpose of analysis, the sawbones were consistently orientated along their mechanical and anatomical tibial axes using custom moulded supports. Digital photographs taken in the plane of the osteotomy were analysed with ImageJ software to calculate the angular difference in the sagittal plane between the hinge-pin and saw-cut. Statistical analysis was performed with SPSS v21 (Chicago, Illinois); a paired t-test was used to compare the freehand and patient-specific guide techniques. Statistical significance was set at a p-value <0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 90 - 90
1 Jan 2016
Cobb J Harris S Masjedi M
Full Access

Large heads offer substantial advantages over small ones in hip arthroplasty, as they are far less likely to dislocate. This feature is of particular benefit in very dysplastic females who often have a degree of joint laxity making dislocation a real possibility. Large metal heads have a range of problems, so registries report that they are now being substituted by large ceramic heads, typically reducing in diameter by 15% or more from the native size.

All current designs of the femoral ball heads, whether for resurfacing of replacement share a unique design characteristic: a subtended angle of 120° defining the proportion of a sphere that the head represents. A novel design has recently been proposed that might reduce conflict between the femoral ball head rim and the iliopsoas tendon. This paper explains the problem of iliopsoas impingement on femoral heads of native diameter, and the consequences.

Material and Methods

Using MRI, we measured the contact area of the Iliopsoas tendon on the femoral head in sagittal reconstruction of 20 hips with symptoms of FAI. We also measured the Articular extent of the femoral head on 40 normal hips and 10 dysplastic hips. We then performed virtual hip resurfacing on normal and dysplastic type hips, attempting to avoid the overhang of the rim inferomedially.

Results

The contact area of the Iliopsoas tendon on the femoral head in extension is well visualized (Figure 1). The femoral head articular surface has a subtended angle of 120° anteriorly and posteriorly, but only of 100° medially. Virtual surgery in a femoral head of a dysplastic hip showed that when the femoral head is resurfaced with an anatomic sized component, the femoral ball head has a 20° skirt of metal protruding medially where iliopsoas articulates (figure 2). Reducing this by 15%, (eg to put a 40mm ball head onto a hip that had a 46mm femoral diameter), completely avoids any chance of iliopsoas tendon using the femoral head as a fulcrum. MRI of a dysplastic hip with a 40mm ball shows that iliopsoas impingement is hard to substantiate (figure 3).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 89 - 89
1 Jan 2016
Cobb J Collins R Manning V Zannotto M Moore E Jones G
Full Access

The Oxford Hip Score (OHS), the Harris Hip Score (HHS) and WOMAC are examples of patient reported outcome measures (PROMs) have well documented ceiling effects, with many patients clustered close to full marks following arthroplasty. Any arthroplasty that offers superior function would therefore fail to be detectable using these metrics. Two recent well conducted randomised clinical trials made exactly this error, by using OHS and WOMAC to detect a differences in outcome between hip resurfacing and hip arthroplasty despite published data already showing in single arm studies that these two procedures score close to full marks using both PROMS.

We had observed that patients with hip resurfacing arthroplasty (HRA) were able to walk faster and with more normal stride length than patients with well performing hip replacements, but that these objective differences in gait were not captured by PROMs. In an attempt to capture these differences, we developed a patient centred outcome measure (PCOM) using a method developed by Philip Noble's group. This allows patients to select the functions that matter to them personally against which the success of their own operation will be measured.

Our null hypothesis was that this PCOM would be no more successful than the OHS in discriminating between types of hip arthroplasty.

22 patients with a well performing Hip Resurfacing Arthroplasty were identified. These were closely matched by age, sex, BMI, height, preop diagnosis with 22 patients with a well performing conventional THA. Both were compared with healthy controls using the novel PCOM and in a gait lab.

Results

PROMs for the two groups were similar, while HRA scored higher in the PCOM. The 9% difference was significant (p<0.05).

At top walking speed, HRA were 10% faster, with a 9% longer stride length.

Discussion

Outcome measures should be able to detect differences that are clinically relevant to patients and their surgeons. The currently used hip scores are not capable of delivering this distinction, and assume that most hip replacements are effectively perfect. While the function of hip replacements is indeed very good, with satisfaction rates high, objective measures of function are essential for innovators who are trying to deliver improved functional outcome.

The 9% difference in PCOM found in this small study reflects the higher activity levels reported by many, and of similar magnitude to the 10% difference in top walking speed, despite no detectable difference in conventional PROMS. PCOMs may offer further insight into differences in function. For investigators who wish to develop improvements to hip arthroplasty, PCOMs and objective measures of gait may describe differences that matter more to patients than conventional hip scores.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 72 - 72
1 Jan 2016
van Arkel R Cobb J Amis A Jeffers J
Full Access

Hip impingement causes clinical problems for both the native hip, where labral or chondral damage can cause severe pain, and in the replaced hip, where subluxation can cause squeaking/metallosis through edge loading, or can cause dislocation. There is much research into bony/prosthetic hard impingements showing that anatomical variation/component mal-positioning can increase the risk of impingement. However, there is a lack of basic science describing the role of the hip capsule and its intertwined ligaments in restraining range of motion, ROM, and so it is unclear if careful preservation/repair of the capsular ligaments would offer clinical benefits to young adults, or could also help prevent edge loading in addition to reducing the postoperative dislocation rate in older adults.

This in-vitro study quantifies the ROM where the capsule passively stabilises the hip and compares this to hip kinematics during daily activities at risk for hip subluxation.

Ten cadaveric left hips were skeletonised preserving the joint capsule and mounted in a testing rig that allowed application of loads, torques and rotations in all six-degrees of freedom (Figure 1). At 27 positions encompassing a complete hip ROM, the passive rotation resistance of each hip was recorded. The gradient of the torque-rotation profiles was used to quantify where the capsule is taut/slack and after resecting the capsule, where labral impingement occur. The ROM measurements were compared against hip kinematics from daily activities.

The capsule tightly restrains the hip in full flexion/extension with large slack regions in mid-flexion. Whilst ligament recruitment varies throughout hip ROM, the magnitude of restraint provided is constant (0.82 ± 0.31 Nm/degree). This restraint acts to prevent or reduce loading of the labrum in the native hip (Figure 2). The measured passive rotational stability envelope is less than clinical ROM measurements indicating the capsule does provide restraint to the joint within a relevant ROM. Activities such as pivoting, stooping, shoe tying and rolling over in bed all would recruit the capsular ligaments in a stabilising role.

The fine-tuned anatomy of the hip capsule provides a consistent contribution to hip rotational restraint within a functionally relevant ROM for normal activities protecting the hip against impingement. Capsulotomy should be kept to a minimum and routinely repaired in the native hip to maintain natural hip mechanics. Restoring its native function following hip replacement surgery may provide a method to prevent subluxation and edge loading in the replaced hip.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 91 - 91
1 Jan 2016
Cobb J Boey J Manning V Wiik A
Full Access

Introduction

Our primary hypothesis was simple: does gait on a downhill gradient distinguish between types of knee arthroplasty? Our secondary hypotheses were these: are stride length and other kinematic variables affected by cruciate ligament integrity following knee arthroplasty?

Participants

Ethical approval was sought and gained prior to commencement of the study. 52 subjects were tested on the instrumented treadmill, 3 groups (UKA, TKA, and young healthy control) of 19, 14, and 19 respectively. The two high performing arthroplasty groups were recruited from a database of patient related outcome measures (PROMs) and were chosen based on high Oxford knee scores (OKS) with a minimum 12 months post hip arthroplasty.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 33 - 33
1 Dec 2013
Cobb J Andrews B Manning V Zannotto M Harris S
Full Access

Outcome measures are an essential element of our industry: comparing a novel procedure against an established one requires a reliable set of metrics that are comprehensible to both the technologist and the layman.

We surmised that a detailed assessment of function before and after knee arthroplasty, combined with a detailed set of personal goals would enable us to test the hypothesis that less invasive joint and ligament preserving operations could be demonstrated to be more successful, and cost effective. We asked the simple question: how well can people walk following arthroplasty, and can we measure this?

Materials and methods

Using a treadmill, instrumented with force plates, we developed a regime of walking at increasing speeds and on varying inclines, both up and down hill. The data from the force plates was then extracted directly, without using the proprietary software that filtered it. Code was written in matlab script to ensure that missed steps were not mistakenly attributed to the wrong leg, automatically downloading of all the gait data at all speeds and inclines.

The pattern of gait of both legs could then be compared over a range of activities.

Results

Wide variation is seen in gait both before and after arthroplasty. The variables that are easiest to explain are these:

width of gait – this appears to be a pre-morbid variable, not easily correctible with surgery. (figure 1)

top walking speed – total knee replacement is associated with 11% lower top speeds than uni knees or normals (p < 0.05)

change in stride length with increasing speed: normal people increase their walking speed by increasing both their cadence and their stride length incrementally until a top stride length is reached. Patients with a total knee replacement do not increase their stride length at a normal rate, having to rely on increasing cadence to deliver speed increase. Patients with uni or bi-compartmental knee replacements increase speed like normal people.

Downhill gait: as many as 40% of fit patients with ‘well functioning’ total knee replacements choose not to walk downhill at all, while all fit patients with ‘well functioning’ partial replacements are able to do this. Those who can manage, can only manage 90% of the normal speed, unlike unis which are indistinguishable from normal (p < 0.05)


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 415 - 415
1 Dec 2013
Masjedi M Harris S Cobb J
Full Access

INTRODUCTION:

The 3D shape of the normal proximal femur is poorly described in current designs of proximal femur prosthesis. Research has shown that in current implant designs with small diameter femoral heads the moment arm of the ilio-psoas tendon is reduced causing weakness in full extension, while large femoral heads cause psoas tendon impingement on the femoral head neck junction [1]. The femoral head-neck junction thus directly influences the hip flexor muscles' moment arm. Mathematical modeling of proximal femoral geometry allowed a novel proximal femur prosthesis to be developed that takes into account native anatomical parameters. We hypothesized that it is possible to fit a quadratic surface (e.g. sphere, cylinder…) or combinations of them on different bone surfaces with a relatively good fit.

METHODS:

Forty six ‘normal’ hips with no known hip pathology were segmented from CT data. Previous research has shown the femoral head to have a spherical shape [2], the focus here was therefore mainly on the neck. The custom-written minimization algorithm, using least squares approximation methods, was used to optimize the position and characteristics of the quadratic surface so that the sum of distances between a set of points on the femoral neck and the quadratic surface was minimized. Furthermore, to improve upon current design regarding the transition between head and the neck, we recorded the position of the head neck articular margin in addition the slope of the transition from head to neck in the above 46 hips.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 32 - 32
1 Dec 2013
Cobb J Aqil A Manning V Muirhead-Allwood SK
Full Access

INTRODUCTION

A recent PRCT failed to demonstrate superiority of HRA over THA at low speeds. Having seen HRA walk much faster, we wondered if faster walking speed might reveal larger differences.

We therefore asked two simple questions:

Does fast or uphill walking have an effect on the observed difference in gait between limbs implanted with one HRA and one THA?

If there is a difference in gait between HRA and THA implanted legs, which is more normal?

METHODS

Participants All patients who had one HR and one THR on the contralateral side were identified from the surgical logs of two expert surgeons. Both surgeons used a posterior approach to the hip and repaired the external rotators on closure. All consenting patients were assessed using the Oxford Hip Score (OHS) to ensure they had good functioning hips.

There were 3 females and 6 males in the study group, who had a mean age of 67 (55–76) vs the control group 64 (53–82, p = 0.52). The BMIs of the two groups did not differ significantly (28 v 25, p = 0.11).

The mean average oxford score of included patients was 44 (36–48). Radiographs of all subjects were examined to ensure that implanted components were well fixed.

The mean time from THA operation to gait assessment was 4 years (1–17 yrs) and that for HRA was 6 years (0.7–10 yrs, p = 0.31). Subjects in this study had a mean TWS of 6.8 km/hr (5–9.5), and a mean TWI of 19 degrees (10–25 degrees).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 89 - 89
1 Dec 2013
Puthumanapully PK Amis A Harris S Cobb J Jeffers J
Full Access

Introduction:

Varus alignment of the knee is common in patients undergoing unicondylar knee replacement. To measure the geometry and morphology of these knees is to know whether a single unicondylar knee implant design is suitable for all patients, i.e. for patients with varus deformity and those without. The aim of this study was to identify any significant differences between normal and varus knees that may influence unicondylar implant design for the latter group.

Methodology:

56 patients (31 varus, 25 normal) were evaluated through CT imaging. Images were segmented to create 3D models and aligned to a tri-spherical plane (centres of spheres fitted to the femoral head and the medial and lateral flexion facets). 30 key co-ordinates were recorded per specimen to define the important axes, angles and shapes (e.g. spheres to define flexion and extension facet surfaces) that describe the femoral condylar geometry using in-house software. The points were then projected in sagittal, coronal and transverse planes. Standardised distance and angular measurements were then carried out between the points and the differences between the morphology of normal and varus knee summarised. For the varus knee group, trends were investigated that could be related to the magnitude of varus deformity.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 296 - 296
1 Dec 2013
Duffell L Mushtaq J Masjedi M Cobb J
Full Access

It has been proposed that higher knee adduction moments and associated malalignment in subjects with severe medial knee joint osteoarthritis (OA) is due to anatomical deformities as a result of OA [1, 2]. The emergence of patient-matched implants should allow for correction of any existing malalignment. Currently the plans for such surgeries are often based on three dimensional supine computed tomography (CT) scans or magnetic resonance imaging (MRI), which may not be representative of malalignment during functional loading. We investigated differences in frontal plane alignment in control subjects and subjects with severe knee joint OA who had undergone both supine imaging and gait analysis.

Fifteen subjects with severe knee OA, affecting either the medial or lateral compartment, and 18 control subjects were selected from a database established as part of a larger study. All subjects had undergone gait analysis using the Vicon motion capture system. OA subjects had undergone routine CT scans and were scheduled for knee joint replacement surgery. Control subjects had no known musculoskeletal conditions and had undergone MRI imaging of hip, knee and ankle joints. Frontal plane knee joint angles were measured from supine imaging (supine) and from motion capture during standing (static) and during gait at the first peak ground reaction force (gait).

OA subjects had a significantly higher BMI (p < 0.01) and different gender composition (13 males and 2 females vs 4 males and 5 females; p = 0.03) compared with controls. Multiple linear regression analysis indicated no significant confounding effect of these differences on frontal plane angles measured in supine, static or gait conditions.

For both OA and healthy subjects, frontal plane knee angles were significantly higher during gait compared with supine (p = 0.03 and 0.02, respectively). There were also significant differences in knee alignment between OA and healthy subjects for supine and static (p < 0.05) but not for gait, although this was approaching significance (p = 0.052). Overall there seemed to be higher variation in alignment in the OA subjects (Fig. 1).

The significantly higher frontal plane knee joint angles measured in both control and OA subjects during gait compared with supine imaging indicate that functional alignment should be taken into consideration when planning patient-specific surgeries. Higher variation in OA patients may be due to alterations in gait patterns due to pain or degree of wear in their osteoarthritic joints, and requires further investigation. In addition, methodological considerations should be taken when comparing alignment from measurements taken with imaging and motion capture to avoid systematic errors in the data. In conclusion, we believe that both supine and loadbearing imaging are insufficient to gain a full representation of functional alignment, and analysis of functional alignment should be routinely performed for optimal surgical planning.